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Abstract. The visual analysis of complex networks is a challenging task
in many fields, such as systems biology or social sciences. Often, various
domain experts work together to improve the analysis time or the qual-
ity of the analysis results. Collaborative visualization tools can facilitate
the analysis process in such situations. We propose a new web-based
visualization environment which supports distributed, synchronous and
asynchronous collaboration. In addition to standard collaboration fea-
tures like event tracking or synchronizing, our client/server-based system
provides a rich set of visualization and interaction techniques for better
navigation and overview of the input network. Changes made by specific
analysts or even just visited network elements are highlighted on demand
by heat maps. They enable us to visualize user behavior data without
a↵ecting the original graph visualization. We evaluate the usability of
the heat map approach against two alternatives in a user experiment.

Keywords: Information visualization, graph drawing, network exploration, in-
teraction, HCI, CSCW, biological networks, heat maps

1 Introduction

With the growing size and availability of large and complex data, the coopera-
tive analysis of such data sets is becoming an important new method for many
data analysts as cooperation might improve the quality of the analysis process
[15] and help to analyze data sets e�ciently. One crucial observation is that
collaborators—who are often spread across the globe—would like to seamlessly
drop in and out of ongoing work [13]. On the one hand, the collaborative anal-
ysis process can take place in a joint online session where everybody is working
simultaneously on one data set, discussing and changing it together in real-time
to create better analysis results. Here, di↵erent experts might want to see what
the others are doing, and if there are possibilities to coordinate their e↵orts and
find a common ground [3,9]. On the other hand, the experts work on the data
set whenever they find the time (i.e., asynchronously) to avoid having to sched-
ule and organize a virtual or physical meeting with a larger group of colleagues.
Both situations cause specific problems that should be handled by tools which
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support collaborative work. For instance, while working independently, it would
be helpful to see changes of the data performed by other analysts. Another in-
teresting issue is to see which part of the data set has already been explored
by others. Here, it is also interesting to know who changed the data: was an
established expert working on a specific part of the data, or a new sta↵ member
who might not have the same experience as the expert?

To tackle the aforementioned problems in the context of collaborative net-
work analyses, we have developed the visualization tool OnGraX [23,24,25]. Our
system was designed for the distributed asynchronous and synchronous collab-
orative exploration of graphs in a modern web browser. Note that we give a
detailed explanation about the engineering aspects of OnGraX in paper [25]. In
contrast, we here propose interactive visualization techniques that

– help to coordinate work in a collaborative setting for node-link diagrams

which may change their topology during the analysis process (referred to as
dynamic graphs in the following) and

– assist analysts to identify previous activities performed by former users on
these networks.

We exemplify our visualization approaches with the help of the collaborative
analysis of metabolic networks from the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway database [1] due to our long lasting research collabora-
tions with biologists/bioinformaticians at several research institutions. Building
such biological networks is often based on complex experiments. In consequence,
biologists of di↵erent domains and experience levels want to explore the result-
ing networks and check them for wrong entries or missing data and revise the
networks wherever it is necessary. Usually, they only check parts of a network
that are specific to their own field of expertise or interest. In this case it is im-
portant to know, what part of the network has already been checked and what
part still needs attention. This can also be used as a kind of quality check: an
area which has been investigated by many di↵erent experts is likely to have a
higher quality than an area only investigated by one scientist. OnGraX supports
such analysis tasks by providing methods for data awareness and coordination.
Note that we retain this usage scenario in the rest of the paper except in the
heat map evaluation (cf. Sect. 5) in order to attract a higher number of test
subjects.

The remainder of this paper is organized as follows. In the next section, we
discuss related work in collaborative graph visualization. We describe our design
decisions in Section 3 and explain OnGraX’ interaction and visualization tech-
niques for displaying user behavior in Section 4. A user experiment to evaluate
our heat map approach for identifying previous user activities is discussed in
Section 5, and we conclude our paper in Section 6.

2 Related Work

Isenberg et al. [11] give a good overview of definitions, tasks and sample visual-
izations in the field of collaborative visualization. The authors define collabora-



tive visualization as “the shared use of computer-supported, (interactive,) visual
representations of data by more than one person with the common goal of contri-
bution to joint information processing activities”. They also provide an excellent
summary of ongoing challenges in this field. All discussed standard systems incl.
more recent developments (e.g., ManyEyes [20] or Dashiki [17]) are not suitable
for our collaborative analysis problems, since they do not support the interactive
visualization of node-link diagrams in a web browser with real-time interactions
for collaboration. The benefits of collaborative work were also discussed in an
article on social navigation presented by Dieberger et al. [6]. Being able to see
the usage history and annotations of former users might help analysts to filter
and find relevant information more quickly. In order to be able to work together
during a synchronous session, users have to know each other’s interactions and
views on the data set, usually referred to as “common ground” [3,9]. To find a
common ground in node-link visualizations, we apply the techniques from the
work of Gutwin and Greenberg [8]. They used secondary viewports and radar
views to indicate other users’ view areas and mouse cursor positions. We use a
similar approach and show the viewports of other users as rectangles in the back-
ground of the graph visualization. Another work by Isenberg et al. [12] introduced
the concept of collaborative brushing and linking, which ”allows users to com-
municate implicitly, by sharing activities and progress between visualizations”.
The authors considered sharing activities during synchronous collaborations on
a tabletop visualization for document collections. We adapt the concept and uti-
lize it in node-link diagrams with the help of a heat map visualization for the
exploration of interaction information in both asynchronous and synchronous,
distributed sessions.

Our tool OnGraX utilizes heat maps to analyze and identify highly frequented
or edited parts of the graph based on user behavior. Patina [16] uses a similar
approach but focuses on visualizing the usage of user interfaces, whereas our tool
facilitates heat maps to visualize interactions of users with the data itself. To the
best of our knowledge, heat map visualizations for representing data in combi-
nation with node-link diagrams are seldomly considered. Usually, they are used
to visualize quantitative data in geovisualizations [19], as cluster heat maps [7],
or for the visualization of eye tracking data to illustrate the quality of web site
designs, user interfaces, or graph layouts [21,18], i.e., for evaluation purposes.
One of the few examples where heat maps are used in node-link diagrams is
PLATO [22] which employs heat maps to visualize gameplay data.

3 Design Decisions

We carefully designed our system in terms of visual representations, interaction
techniques, and analysis processes to support biologists/bioinformaticians in ex-
ploring and curating graphs from the KEGG pathway database. We decided to
focus our work on node-link diagrams, since this is still the most accepted and
preferred graph drawing metaphor, and our users are familiar with this kind of
visualization. Our overall goal was to develop a visualization system that al-



lows analysts spatially spread across multiple research labs or even countries to
quickly start an analysis session and to work on large and complex networks to-
gether. A special problem that arises during the distributed analysis of graphs is
that topology and structure of a graph are independent to the layout. Analysts
might change the layout drastically during the analysis process, which compli-
cates the task of keeping track of the graph objects and areas that users were
most interested in. We also want our tool to support tracking and subsequent vi-
sualizing of all actions and graph changes performed by the users. This includes
to keep track of the users’ camera positions and use this data later to assist
users in finding parts of a graph that were interesting to other analysts or have
been edited a lot. The reason behind this is that users in a collaborative working
environment do not always find the time to work together simultaneously. They
would prefer to work on the data set whenever it is convenient for them. And in
such a case, they would like to review changes that have been performed on the
data set by other analysts in the past. Maybe, they also want to find out which
part of the data set another analyst was looking at, since he/she might be an
expert in the underlying application field and has another exploration pattern
compared to less experienced users. Showing this data—the camera and mouse
positions, the logged user views, and changes to specific objects—in the graph
without changing the original node-link visualization was an important require-
ment for our users. Biologists are accustomed to existing layouts and drawing
conventions of graphs from the KEGG pathway database. Thus, changing po-
sitions, color, or the shape of nodes to show the data which is collected during
collaborations is not an option for our analysis tasks.

During their work, analysts would also like to share their thoughts, insights,
and questions about specific nodes, edges or regions with other users. This could
happen during a synchronous session where collaborators want to discuss their
findings, or in an asynchronous session where users would like to share mes-
sages and pointers on specific nodes. Heer and Agrawala discuss these ideas as
“Common Ground and Awareness” and “Reference and Deixis” in their work on
collaborative visual analytics [9]. In case of graphs that change their topology
during the analysis process, single nodes or complete graph regions could be
deleted from a graph, rendering old user annotations useless without the pos-
sibility to view them in their historical context. Thus, analysts need a way to
quickly view the graph in a state when the annotation was originally written.
Based on this discussion, we categorize our requirements as described in the
following.

Collaboration Requirements (C-R)

1. Users should be aware of the position of other users in the same synchronous
session.

2. Users should have possibilities to establish and keep a common ground with
other users. Everyone should be aware of performed changes on the graph
during a session.

3. They should have an option to discuss ongoing work through persistent chat
channels and annotations.



Visualization Requirements (V-R)

1. Annotations should be viewable in their historical context. Thus, it should
be possible for users to review old graph states.

2. Provide an easy and intuitive way for analysts to find out which regions of
a graph where viewed and/or changed by former users.

3. Additionally, the visualization of this data should not interfere with the
original node-link diagram.

4 Interaction and Visualization Techniques

Figure 1 shows an overview of the tool right after joining an ongoing graph
analysis session. In this case, the user has joined a session where two other
users, Bob and Sue, are already working in. Their viewports are represented as
two dashed rectangles: Bob’s view is shown in blue (bottom left) and Sue’s view
is shown in green (bottom right). All users in a session are listed as small icons
at the left hand side of the screen. By clicking on one of the user icons, the
camera moves to his/her current position in the graph. This feature provides
a quick way to join and discuss another user’s viewing area. Visualizing the
viewports of other users helps us to tackle our first collaboration requirement (cf.
C-R 1). An overview of the graph is rendered in the bottom-right corner of the
screen. Here, the user’s camera position is shown as a blue rectangle. As in many
other standard visualizations that use overview+detail [4], this rectangle can be
dragged to another position in the overview in order to modify the detail view
(the same can be done by simply clicking on the new position in the overview).

We use a standard node-link metaphor to visualize graphs in our system.
The visualization uses tapered edges for directed graphs, as suggested by Holten
and van Wijk [10], since they provide users with a faster way to find connected
nodes as opposed to arrowhead edges. If another user selects one or more nodes,
this will be visible to all other participants of the analysis session. An outline in
the respective user color is added to a selected node; thereby the system adapts
the outline shape to the corresponding node shape. To make graph changes per-
formed by other users during a synchronous session more obvious and to address
the second collaboration requirement (cf. C-R 2), we use short animations on
the a↵ected objects, similarly to the work of Gutwin and Greenberg [8]. For
instance, the outlines for other users’ node selections are animated shortly while
they are added or removed, nodes are slowly moved to new positions instead of
just jumping there after being moved by another user, and deleted nodes slowly
vanish instead of just disappearing.

4.1 Annotations and Chat Links

In order to improve the communication among collaborators, our tool has a
persistent chat channel for every graph session and o↵ers the possibility to link
chat messages to a position or a node in the graph. Users can use those chat



Fig. 1. Overview of our system. The image shows a part of a biochemical network with
1,301 nodes and 1,314 edges. The blue and green dashed rectangles (see (a) and (b))
are the viewing areas (viewports) of two other users who are also exploring this graph
simultaneously. In this concrete case, the underlying heat map highlights those nodes
that were in the viewing area to all users during the last hour. Symbols in the top-right
corner of the screen (c) assist analysts to keep track of recent actions performed by
other users. the timeline (d) is used to temporarily revert the graph to a previous state
and to replay applied changes. Analysts can pin text annotations to nodes and edges
to discuss tasks, insights and questions with each other (e+f).

links to move the camera to the linked object or position. A link to an arbitrary
position might become obsolete after changes to the graph layout, but a mes-
sage linked to a node or edge will always be valid as long as the object is not
deleted. In addition, users can attach textual annotations directly to nodes or
edges (cf. Figure 1, (e+f)). These annotations work as pointers from the graph
visualization to text and vice versa. Clicking on an annotation in the graph visu-
alization opens the annotation dialog and highlights the linked message. A click
on an annotation in the dialog moves the camera to the object’s position in the
graph visualization. With the chat and annotation features, we address our last
collaboration requirement (cf. C-R 3).

One problem with textual annotations and chat messages linked to objects
is, that the original context in which an annotation or message was initially
written could get lost if the respective graph region—where the link is pointing
to—is changed during the course of a session or if the object with this link is
deleted. We solve this problem by enabling analysts to temporarily revert the
complete graph to an old state (similar to the timeline feature, cf. Sect. 4.3) by
right clicking on a chat link or an annotation, giving them the possibility to view
the graph in a state in which the annotation was originally written. This feature
addresses our first visualization requirement (cf. V-R 1).



4.2 Visualizing User Behavior Data with Heat Maps

In order to provide users with a way to quickly find out which nodes or regions of
a graph were viewed and/or changed by others (cf. V-R 2), we considered several
options. It would be possible to map the corresponding data to the colors or the
size of the nodes. Another option would be to use additional glyphs on/around
the nodes which represent this data. Using glyphs would also allow us to show
both the viewport data and the data for graph changes at the same time, as
small bar charts for instance. The third option is a heat map-based visualization
in the background of the graph visualization. We decided to omit mapping the
data to the size of nodes, as this would interfere too much with the original graph
layout and could introduce too many node overlaps. Additional options would
have been to use contour lines [2] or bubble sets [5], but for our use case the
focus usually lies on finding and marking single nodes instead of bigger regions
in a graph. The remaining three options are exemplified in Figure 2.

Fig. 2. Heat map visualization (a) and two alternative approaches: glyphs (b) and
node color (c). They are used to indicate which parts of the entire graph were viewed
or changed by other users.

One disadvantage of glyphs in this context is the increased clutter in the
graph visualization. Additionally, depending on the size of the glyphs, it could
be hard to see the actual data values in highly zoomed-out views of the graph.
Changing the color coding of nodes in a graph as alternative is in conflict with
our last visualization requirement (cf. V-R 3), because the color coding can be
already mapped to another attribute. Thus, heat maps could provide a good
alternative to visualize additional data without directly changing the attributes
of objects in a node-link diagram. Users can choose between a colored heat map
and a monochrome heat map in case the colored version interferes too much
with the actual node colors. We performed a user experiment (cf. Sect. 5) to
assess how the heat map approach compares against glyphs and node colors. The
actual values, which are mapped to the glyphs, node colors, or heat map can be
computed based on two di↵erent data sources: viewports and graph changes.

Displaying Viewports In the first case, values are calculated based on the amount
of seconds that nodes have been in the viewing areas of users (visitation rate).



For aggregating this data, OnGraX stores each user’s viewport together with the
time spent on the position whenever the viewport is changed. Additionally, each
time a node is moved, the old position is logged. The server correlates all logged
user views and node positions to calculate the values, thus making them robust
against changes in the layout of the graph. Figure 3 illustrates this approach. In
this small example, three stored viewports of one user and two node movements
from another user—whose viewports are ignored here—are taken into account.
The user arrived at position A at exactly 10:00 AM, stayed there for 10 seconds,
moved his viewport to position B for 5 seconds and finally stayed 16 seconds at
position C. In viewport A, node 1 was visible for 10 seconds, but in viewport C,
it was only visible for 12 seconds, as the node was only moved into the viewport
4 seconds after the user arrived at the position, resulting in a complete viewing
time of 22 seconds for node 1. The viewing time of node 2 is only 2 seconds, as
it was moved into viewport B 13 seconds after 10:00 AM, and the user arrived
there at 10 seconds after 10:00 AM and left 5 seconds later.

Fig. 3. Illustration for the correlation of all stored viewports with all node move actions
to create a heat map that is robust against layout changes of the graph.

For zoomed-out views that show a lot of nodes, it is clear that the user does
not attend to all nodes in such a view. To solve this issue, users can adjust the
settings to filter out these “big views” and only use zoomed-in views to calculate
the heat map. Views are also only tracked if the user is actively working on the
graph: if a user switches to another window or tab, then the tracking is stopped.
It is also stopped if the mouse is not moved for a while (currently 20 seconds)
to avoid tracking views of inactive users. This approach does still include nodes
in the views that might not have had attention by an active user, but it gives a
better estimate about the viewed graph regions without asking a user to mark
every inspected node manually or asking all users to use an eye tracker during
the analysis process, for instance.

Displaying Graph Changes In the second case, OnGraX calculates values based
on changes that have been performed on nodes. Seven actions (name changed,
shape changed, node moved, node added, node selected, edge added, edge re-
moved) are tracked and can be used to calculate the heat map values in this



case. A multiplier is specified in a configuration dialog for each individual action
type to give it more or less weight during the calculation. This enables analysts
to highlight only nodes that were moved and had their names changed, for in-
stance. The visualization can be configured to only show a specific user or to
show the data for all users together (the selection of user groups would also be
possible and could easily be added to the system). Furthermore, it is possible
to select a time frame, for instance, the last five minutes of the current analy-
sis session, or a specific start and end date. This enables an analyst to review
changes done in a collaborative session during a specific time frame or to check
the work of a single user.

4.3 Tracking and Replaying User Actions

Actions performed by other users during a synchronous session are shown at
the right corner of the screen (cf. Figure 1, (c)) together with the name of the
user who initiated the action. A right-click is used to dismiss a recent action
and a left-click moves the camera to the location of the action in the graph.
Another left-click on the same action moves the camera back to its original
position. Thus, users can quickly check what their collaborators are doing and
then return to their own work, without having to navigate to every performed
action manually. To provide our users with the possibility to keep track of all
actions that occurred in a session, we use a scrollable timeline at the bottom
border of the screen that shows the complete action history of the graph session
(cf. Figure 1, (d)). The mouse tooltip for the symbols in the timeline shows the
action time and the name of the user who performed the action. The timeline
can also be used to revisit old graph states and replay previous actions. If a user
clicks on a symbol, all actions performed since this specific action are replayed in
reverse order. The visualization will show the graph in a state before the action
was performed. Shortly after the graph has been transformed to its old state,
the clicked action is reapplied, animating the graph to the requested point in
time. This feature gives users a tool to revisit old graph states and replay old
actions allowing them to assess what work has been done by other collaborators.
Clicking on the rightmost symbol reverts the graph back to its present state.
While viewing an old graph state, it is not possible to apply any changes to the
graph. We decided against this feature as it would open the possibility to create
numerous new branches of di↵erent graph states. This is an interesting aspect
and actively researched [14], but currently not the focus of our work.

5 Heat Map Evaluation

We performed a user experiment to evaluate the usefulness and acceptance of
our heat map approach to visualize user behavior data in comparison to glyphs
and node coloring. We recruited 15 participants (7 undergraduate students, 7
graduate students, and 1 post-graduate; average age = 28; 5 female, 10 male).
Seven participants had a background in computer science and eight a background



in media technology. Eight participants never worked with node-link diagrams
before, but everyone was familiar with them.

All 15 sessions were recorded on video and the participants were instructed
to employ a think-aloud protocol. Before starting the actual tasks, the tool and
the three visualization approaches for user behavior data (glyphs, node color,
heat map) and their meaning were introduced by the experimenter and each
participant could explore a sample graph to get accustomed to the tool. Each
session took about 25-30 minutes, and we asked the participants to solve each
task as quickly as possible, but the time for the tasks was not limited by us. All
participants had to solve two tasks for nine di↵erent graphs with the help of the
three visualization approaches. Both tasks were described as follows:

Task 1 – explore graph changes: Find and count all nodes that were moved
by a specific user (9-14 single marked nodes per graph).

Task 2 – explore viewports: Find all regions that a specific user was most
interested in (1-3 marked regions per graph).

The experiment was conducted as a within-participants experiment, and users
were divided into three di↵erent groups. Every group explored all graphs in the
same order but with a di↵erent sequence of visualization approaches. Six graphs
were generated randomly: the first three graphs consisted of 1,000 nodes/edges
and the following three of 2,000 nodes/edges. For the last three graphs, we used
existing metabolic networks with 1,300 to 1,800 nodes/edges.
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Fig. 4. Analysis of the two tasks for the di↵erent visualization approaches.

Quantitative Results We started measuring the task time in seconds for each
task as soon as the visualization of the user behavioral data was enabled by
the participants and stopped the time as soon as they reported a number. For
Task 1, we show the number of nodes that were not found by the users (mean
error rate). In Task 2, all participants found all marked regions, regardless of
the visualization approach. Therefore, we only report the error rate for Task 1.
Figure 4 shows the summarized results for all graphs. Initial Friedman tests



showed that both tasks had statistically significant di↵erences in task comple-
tion time. Task 1: �2 = 34.881, p < 0.001. Task 2: �2 = 16.812, p < 0.001.
We conducted a post hoc analysis with Wilcoxon signed-rank tests for our not
normally distributed data. For Task 1, the median interquartile range (IQR)
task completion times were 26 (Glyphs), 39 (Node Colors), and 20 (Heat Map).
Both, glyphs vs. heat maps (Z = �3.678, p < 0.001) and node colors vs. heat
maps (Z = �5.334, p < 0.001) had a significant reduction in task completion
time. For Task 2, the median (IQR) task completion times were 19 (Glyphs), 15
(Node Colors), and 13 (Heat Map). Here, the heat map approach also performed
significantly better in comparison with glyphs (Z = �3.678, p < 0.001) and node
colors (Z = �2.406, p = 0.016).

Qualitative Results We asked all participants which visualization approach they
preferred. Everyone favored the heat map visualization. For them, the heat map
was the easiest to perceive, and it also provided the most convenient way to find
single nodes with high values, even at lower zoom levels. While performing the
second task, four participants mentioned that the glyph approach introduced
too much clutter in the view, especially for the metabolic networks. They said
that glyphs were hard to distinguish from the actual nodes, because both the
nodes and glyphs sometimes had a similar shape.

6 Conclusions

In this paper, we presented a web-based collaborative system for visualizing
graphs with several thousands of nodes and edges. Our tool OnGraX provides
visualization and interaction techniques for analyzing data sets synchronously
and asynchronously in a distributed environment. Additionally, all actions per-
formed during a session as well as the users’ camera positions are tracked and
can be visualized along with the graph data by using heat map representations.
We propose using heat maps to e�ciently show additional data without a↵ect-
ing the original graph visualization. Based on a user experiment, we show that
the heat map-based approach compares better against glyphs or changing the
background color of nodes. As future work, we plan to evaluate the other aspects
of OnGraX—such as those described in Sect. 4.1 and 4.3—and to use the tool in
other contexts. For instance, our collaborators want to use OnGraX for the edu-
cation of their biology students. The idea is to give students existing metabolic
pathways and ask to revise and edit those graphs. Afterwards, the docents could
join the online session and discuss those changes with the students. We will use
this opportunity to test our tool in another authentic environment and perform
a detailed user study during collaborative work in an educational setting. In our
specific use case, graph changes are usually limited to a couple of nodes, thus
the tracking of all actions and visualizing this data is not an issue here. But, it
could become problematic if a graph or a subgraph is changed drastically. In this
case, additional options to set the granularity for tracked events and alternative
visualization techniques would be required incl. a newly designed evaluation.
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