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Figure 1: The node-link diagram of the input graph is shown on the left (after the initial three steps of our layout algorithm have been performed).
The consecutive diagrams (b-e) show the step-by-step computation of the space-filling layout process. The source is marked with the label s,
the target/sink with label t, whereas the node labeled with d is a so-called dummy node. This node is used to compute the empty space as seen
in Figures 1(c) and 1(d). Note that the direction of the edges is implicitly given by the four layers (top-down).

ABSTRACT

Planar st-graphs are used in a number of different application fields
in the sciences, but also in industry. So far, mainly node-link-based
layouts have been used to visualize such graphs especially in the
Graph Drawing community. One drawback of these standard lay-
outs is their high consumption of space. In Information Visualiza-
tion, there exist visualization techniques for graphs which achieve
considerable space savings, such as matrix-based approaches. In
this work, we present a novel space-filling representation to visual-
ize planar st-graphs.
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1 INTRODUCTION

A planar st-graph is a directed acyclic graph that has exactly one
source node s, one sink node t and admits a planar drawing, i.e., no
two edges intersect [3]. These graphs are used in a variety of areas
including motion planning, computational geometry, graph theory,
and very-large-scale integration (VLSI) design [9, 4].

In this paper, we present a new radial space-filling approach to
visualize planar st-graphs. Since these graphs have exactly one sin-
gle source, one single sink, and no edge crossings, it is possible
to adapt traditional space-filling layouts like treemap [2] or sun-
burst [7] approaches for a space-saving representation of st-graphs.
We took inspiration from the work of Papamanthou and Tollis [5]
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who used wide rectangles to represent intermediate nodes of st-
graphs, while using different colors to denote the source and sink
nodes. A prototype has been implemented to demonstrate our ideas.
The layout algorithm is briefly outlined in the next section followed
by a discussion of the prototype implementation and preliminary
results in Section 3.

2 THE LAYOUT STRATEGY

The first three steps of the algorithm are well known from tradi-
tional layering algorithms introduced by the Graph Drawing com-
munity [8]. At first, longest path layering is used to place the nodes
into corresponding layers. Second, so-called dummy nodes are in-
troduced if an edge connects two nodes that are not in neighbor lay-
ers. The third step is responsible for removing the edge crossings.
Figure 1(a) shows a small graph that has been layered.

These steps, although not introduced by us, form the basis for
our radial space-filling approach. In the following, we present two
phases for drawing the st-graph. In the first phase, we traverse the
layers top-down: starting from the first layer (the source node) and
compute all shapes and positions of each node. The final drawing is
done in a second bottom-up traversal. The reason for this strategy
is to avoid the drawing of complex shapes by drawing circles and
sectors only. The second traversal could be avoided altogether by
drawing the nodes in the computation phase by using a z-index (if
the programming language permits it) to ensure that the nodes from
top layers are placed in the foreground.

The first phase of the layout algorithm is explained in the fol-
lowing with the help of the sample graph shown in Figure 1(a). We
start at the top layer L1, i.e., the source node. If there is only one
node in the current layer, and there are no transitive edges passing
through, the node is drawn as a circle with circumference depend-
ing on the layer number the node belongs to. In L1, the source node
fulfills this condition and is drawn as shown in Figure 1(b). If there
are more than one node in the corresponding layer, then they are
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drawn proportionally as sectors on top of the parent nodes. In case
there is a dummy node, i.e., a transitive edge is present, a small
percentage of the circular ring is omitted to show the connection
between the previous layer and the next one. The rest of the cir-
cular space is divided proportionally as shown in Figure 1(c). The
next step is more complicated: node 3 has the nodes 1, 2 and s as
parents (keep in mind that node d is a dummy node and is only used
to calculate a gap), i.e., the corresponding segment in the new lay-
out has to “touch” all of them. However because node 2 has two
children (3 and 4), the available space for the children should be
divided equally on the area touching node 2. Therefore as depicted
in Figure 1(d), we compute the position of node 4 on top of its par-
ent taking half of the perimeter of the parent’s sector. The rest of
the space is reserved for node 3 as it touches the rest of the parents.
Finally, the position and size of the sink node t is computed, and
the graph can be finally drawn as shown in Figure 1(e). All posi-
tions are specified by calculating the start and stop coordinates of
the circle sectors.

3 IMPLEMENTATION AND RESULTS

A prototype implementation has been developed using Java to-
gether with the Processing [6] graphic library. It uses GraphML [1]
as input file format of the st-graphs. As our current tool is a proof-
of-concept implementation, we have not implemented any standard
crossing reduction algorithm or planarity check [3] yet. This task is
manually done at the moment by using drag and drop interactions
on the node-link representation of the loaded input st-graph shown
in Figure 2. After the removal of all edge crossings, we are able to
run our algorithm.

Figure 2: View for eliminating edge crossings (EEC-view). Users
are able to drag and drop nodes within the corresponding layers.
The small nodes without labels are automatically generated dummy
nodes.

To demonstrate the final layout results in this poster paper, we
built a st-graph by using the yEd [10] tool shown in Figure 3.
Subsequently, the graph has been exported to GraphML format
and loaded into our prototype implementation. The nodes will be
placed in layers and dummy nodes will be created automatically.
As mentioned before, we have to manually ensure that there are
no edge crossings by interacting with the node-link representation.
Finally, the algorithm creates a space-filling radial layout for pla-
nar st-graphs as shown in Figure 4. Brushing is used to show the
mapping between the new space-filling layout and the EEC-view.
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