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ABSTRACT
Evolutionary algorithms (EAs) use mechanisms inspired
by biological evolution, e.g., natural selection, recombina-
tion, or mutation, that work on populations of solutions for
a specific problem. These recurring processes produce a
huge amount of time-varying data. In order to get a bet-
ter insight into the progress of EAs, a Java-based visualiza-
tion tool, called EAVis, was developed. The most important
aims of EAVis are the selection, concentration, and abstrac-
tion of evolutionary data on different levels using a variety
of visualization methods. Several coordinated views (2D
and 3D) help the user to watch each generation step of the
EA and to derive knowledge as well as better understand-
ing of the underlying evolutionary computational models.
Among other things, this is also important for a clever pa-
rameter setting to gain better performance values.
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1 Introduction

Evolutionary computation (EC) imitates some basic princi-
ples of evolutionary processes by using a variety of evolu-
tionary computational models. Such computational models
are typically called evolutionary algorithms (EAs) which
include evolutionary programming, evolution strategies,
genetic algorithms (GA), and genetic programming. Ba-
sically, EAs correspond to population-based metaheuristic
optimization algorithms. At this, they use a number of
common evolutionary methods, e.g., selection (“survival
of the fittest”), recombination (“crossover”), or mutation
(“random changes”). EAs work on a population of solu-
tions in which the initial population is randomly initialized
in most cases. By repeated application of the evolutionary
methods, a new generation of the population is produced
and a so-called fitness function evaluates each new genera-
tion, see [1].

The complexity of evolutionary algorithms makes
them difficult to understand. Detailed analysis is difficult
due to the large amount of data that can be obtained in a
single run. We have implemented a visualization tool that
displays the data on different levels facilitating the under-
standing of the underlying process and the impact of strat-

egy parameters which determine the behavior of an EA or
define an EA in more detail. Examples are population size,
mutation rates, or crossover rates. Our aim was to build an
extendable tool for general use in visualization of EAs, i.e.,
not only for special applications.

In the remainder of this paper, we firstly give a short
overview of related works in Section 2. Next, Section 3 de-
fines the evolutionary computation of the Knapsack Prob-
lem that we use as running example throughout this pa-
per. Section 4 describes the design of our visualization tool
EAVis and presents some screenshot examples as well as
important features. Some implementation aspects are illu-
minated in Section 5. Finally, our paper ends with Section 6
giving concluding remarks.

2 Related Works

So far, there is only few research in visualization of EAs.
Most visualization approaches were published at the end
of the nineties. At this time, the Evolutionary Computa-
tion Visualization Workshop 1999 was an important event
to bring researchers of this area together. It was co-located
with the GECCO ’99 Conference and was organized by
T. D. Collins. In his work, he tried to adopt popular Soft-
ware Visualization techniques (see for example [2, 3]) in
order to illustrate the search behavior of evolutionary algo-
rithms. One result was the development of Search Space
Matrices: a visualization technique that allows a linear
mapping for an entire search space [4]. His paper compares
this technique with older visualization approaches recom-
mended for EC users, such as Allele Versus Loci Frequency
Matrices [5]. Another visualization tool of Collins, called
GONZO [6], supports three different views: a Fitness Ver-
sus Time Graph, a Search Space Visualization (shows the
GA’s chromosomes as a point set in a 2D representation of
the search space), and a Fine-grained Chromosome view
(displays the values of selected chromosomes and their fit-
ness ratings). GONZO was developed using the HENSON
framework [7].

The VIS tool is discussed by Wu et al. [8]. Their aim
is to facilitate the examination and analysis of GA runs.
VIS supports the representation and examination of indi-
viduals, populations, and entire runs. Several “visualiza-
tion formats” for displaying individuals are offered, e.g., as
a string of characters, as a series of multicolor stripes (sim-
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ilar to a bar code), and as collection of defined building
blocks. These formats also include related details, such as
parents of each individual or the possibility to watch indi-
viduals from a single population, etc.

A more line plot-like visualization of adaptive evolu-
tionary phenomena is introduced by Bedau et al. [9]. So-
called Activity Wave Diagrams show evolutionary activi-
ties of alleles on the basis of three different evolving sys-
tems, e.g., a model of traders selling and buying securi-
ties in a financial market using an evolving set of market-
forecasting rules.

Pohlheim presents a set of standard techniques for dif-
ferent data types and time frames of EAs, see [10]. These
techniques are based on data types, e.g., variables of best
individual of every generation, and can be displayed with
the help of standard visualization tools (plotter or diagram
viewer). Additionally, multidimensional scaling as method
for presenting high-dimensional data is discussed.

It is interesting that only few methods or techniques
from the area of Information Visualization (InfoVis) are
used to develop new visualizations of the time-varying data
produced by EAs. Of course, this kind of visualization can
be subsumed by Software Visualization. That is obvious
but the vast amount of data also leads to problems which are
tried to solve by the InfoVis community. Spears provides
in his short paper [11] a nice brief overview of multidimen-
sional visualization techniques for visualizing EAs includ-
ing the use of color, glyphs, or parallel coordinates [12].

3 Application: 0/1-Knapsack Problem

As a simple application example, we have chosen the 0/1-
Knapsack Problem [13] that is a classic NP-hard, combi-
natorial optimization problem with a wide range of appli-
cations. It may be formulated as follows: We have given
N items i of different values ci > 0 (costs) and volume
wi > 0 (weight), and a knapsack of fixed volume C (ca-
pacity). The task is to find the most valuable selection of
items that fit in the knapsack. Each item must be put en-
tirely in the knapsack or not included at all, i.e., objects
cannot be broken up arbitrarily. Formally, we introduce N
new variables xi (1 ≤ i ≤ N ) to encode the item selection
(xi = 1 if selected, xi = 0 if not). We can describe the
0/1-Knapsack Problem as maximization problem:

max

{
N∑

i=1

cixi | xi ∈ {0, 1} ∧
N∑

i=1

wixi ≤ C

}
(1)

The original population P of our EA is initially cre-
ated by random setting of the alleles, i.e. of the x i vari-
ables. Here, we get a population size of |P | = 100 indi-
viduals (solutions) sj = (xij , . . . , xNj) with 1 ≤ j ≤ |P |,
C = 250, and N = 30. During the EA’s run, all individ-
uals are tested by a very simple fitness function F which
evaluates their property to be a valid solution:

F (sj) =

{
0 :

∑N
i=1 wixij > C∑N

i=1 cixij :
∑N

i=1 wixij ≤ C
(2)

Note that there are many other possibilities to define a fit-
ness function. This procedure results in a ranking of the
different individuals. The best individuals of the popula-
tion are entitled to inherit their alleles to the next genera-
tion (selection). Mutation and inversion (a special kind of
mutation) of alleles of randomly selected individuals also
result in the forming of individuals in a new population.
Individuals that are weak with regard to the fitness function
are discarded: they are not entitled to spread their alleles in
further generations. Actually, there is no break condition.
The user can stop the evolutionary process by mouse-click
and the result, the fittest individual of the population, is
displayed. But we plan to extend EAVis by a possibility to
enter any break condition. In the remainder of this paper
we use this application as running example.

4 EAVis

EAVis provides an interface by which problem instances,
e.g., the implementation of an EA that solve our 0/1-
Knapsack Problem, can be specified (see Section 5). The
tool takes the role of a process controller and looks for all
relevant data for the visualization. In this way, it is also
possible to control the EC process itself with the help of our
tool. So, EAVis can be considered as on-line visualization
system in contrast to post-mortem or off-line visualization
systems, such as the VIS system [8]. The user can control
the generation process online by using a VCR-metaphor,
cp. [14] for more details. As first step, a new initial pop-
ulation is generated on the basis of the given specification.
The user can estimate this population with the help of sev-
eral coordinated views. If he/she is displeased with the re-
sult then the tool can generate another initial population by
mouse-click. In case of an acceptable result, the user can
start the evolutionary process.

4.1 Coordinated Views

Each produced generation can be monitored by a variety of
coordinated views. Besides standard methods, like plotting
mean fitness values of the entire generation versus fittest in-
dividual, the aim was to create novel views that will convey
a more intuitive idea of the quality of the underlying strat-
egy parameters. Moreover, our views should help to facili-
tate the non-trivial task of setting up the strategy parameters
and other basic configurations, such as population size, ter-
mination conditions, etc. That is an ongoing work and we
have not completely implemented all envisaged views yet.
Additionally, the tool supports an easy possibility to embed
an application-dependent Phenotype View, i.e., a visualiza-
tion of the problem itself (cp. Section 4.2).

In order to display the permanent change of the pop-
ulation, several views have been created to facilitate the
understanding of the underlying evolutionary processes.
EAVis provides two different kinds of views: general views
and tabbed views.



Figure 1. Screenshot of the EAVis tool (tab I opened)

4.1.1 General Views

Value of the general views is to inform the users about
the overall state of the current evolutionary process. These
views are shown at the left-hand side of Figure 1 and dis-
played at any time.

Ranking The Ranking view is basically a list which con-
tinuously displays all individuals in descending order of
their fitness values, see Figure 1, top left-hand side. This
view presents for each individual its rank, the last value of
the fitness function F , and the evolutionary method (origin)
which was used by the EA to create this individual. Thus,
it can show whether there is a trend towards better fitness
descended from a certain method of generating individu-
als. In our example, there are no unique identifiers (IDs)
for the individuals. But there are applications in which
IDs could be very useful, for example if the individuals
have a more complex structure like neural networks etc.
Another question is how IDs should be graphically repre-
sented (cp. the VIS system [8]). Currently, EAVis does not
support the detailed graphical representation of individuals
yet (our Allele subview is a first step in this direction, see
Section 4.1.2).

Origin of Fittest Individual Receiving information
about the origin of the fittest individual per generation is a
very important issue for the understanding of the efficiency
of the strategy parameters of the EA. If an improvement of
the best fitness value occurs then this view draws vertical
stripes into a horizontal generation scale (cp. Figure 1, cen-
tered on the left-hand side). Each stripe is colored to repre-
sent the origin of the present fittest individual, i.e, mutation
(red), recombination (blue), or initialization (green).

Average Fitness vs. Fittest Individual This view is
strongly connected with the Average/Fittest Plot view, see
below. It symbolizes the relationship between the average
fitness values and the best fitness value of the actual genera-
tion as a horizontal-bar diagram (cp. Figure 1, bottom left-
hand side). If the user switches between the other views
arranged on tabs then he can watch this view to receive a
fast impression of the relative difference.

4.1.2 Tabbed Views

The user can easily switch between all views that are
arranged on tabs, displayed at the right-hand side of Fig-
ure 1. These views give more detailed information. From
the developer point of view, this concept supports any fu-
ture extensions of EAVis with additional views.

Average/Fittest Plot The visualization of the fitness val-
ues of the best individual of each generation is one of the
most used standard diagrams for the progress of an EA’s
run. In our example, we only have one fitness function
because the considered 0/1-Knapsack Problem has one op-
timization variable namely the maximization of the costs.
The Average/Fittest Plot view that is shown at the right-
hand side of Figure 1 draws the fitness of the fittest indi-
vidual (upper line plot) together with the average fitness
value of all individuals (lower line plot) of each generation
as line plots in one coordinate system.

To get a space-filling visualization, we decided that
the coordinate system dynamically adapts to the current
maximum generation number at the x-axis and to the high-
est fitness value at the y-axis. Note that the resulting plots
are dependent on the actually used fitness function. Thus,
it occurs that the average fitness value decreases temporary.



Within this view, it is also possible to highlight special
events, for example if the fitness value increases by 10%.
Then, the view fades in a small graphical symbol which can
be clicked on. Subject to the event type additional informa-
tion is displayed or the user is directed to another view.

History of the Fittest This view on the second tab is a ta-
ble depicting the history of the fittest individuals. For each
generation one individual with the best fitness is placed in
an own row labeled with the generation number, fitness
value, origin, and alleles (cp. Figure 2(a)).

The Allele subview represents a history of the fittest
individual of each generation. In our running example, the
item selections for the knapsack are displayed as black and
white “barcode” (white = 0, black = 1), similar to the dis-
play of real world gene sequences in molecular biology.
Due to this representation, it is possible to see how and
which alleles are passed from generation to generation or
which alleles are subject to vast changes. Note, we merely
have a b/w-coloring because the alleles, i.e., the x i vari-
ables in Section 3, code binary information. Other applica-
tion examples which use another genetic alphabet lead to
more complex color coding schemes, for example schemes
that are presented in the paper of Wu et al. [8]. Our tool
supports such complex coding schemes too.

Population Sometimes it is important to see all individu-
als of a population of one generation. Individuals represent
potential solutions to the problem that we want to solve.
Thus, similarities between different individuals could be
very interesting. The Population view (see Figure 2(b))
represents all individuals of the current population as col-
ored dots. The color of these dots depends on the origin of
the individual, i.e., whether it originated from a recombi-
nation (blue), mutation (red), or initialization (green). The
positions of these dots are defined as follows: The fitness
value of any individual is plotted on the y-axis; the x-axis
represents the binary distance of the fittest individual (its
computation is detailed in Section 5). As result, the dot rep-
resentation of the fittest individual is located on the value
1.0 of the x-axis and the entire scatter plot describes the
similarity of all solutions within one population shown by
Figure 2(b). It follows that approximately 50% of the al-
leles of all individuals (dots) that are located near at the
x-value 0.5 are identical with the alleles of the currently
best individual. In this way, it is also possible to visualize
subpopulations with similar genetic properties.

Multiple Runs EAVis offers the possibility to store all
data produced in previous runs. The Multiple Runs view
takes this information (of course based on the same input
problem) and displays the fitness values of the best specific
individual of each generation in a single coordinate system.
This is only possible up to eight different runs in order to
save storage. By this means, comparisons between differ-
ent runs and strategy parameters are supported, shown in
Figure 2(c). The screenshot illuminates six EA runs on the
same input problem. They only differ in the initial popula-
tion. Here, all runs have a very similar growth behavior.

(a) Tab II: History of Fittest

(b) Tab III: Population

(c) Tab IV: Multiple Runs

Figure 2. Three tabbed views



Figure 3. 3D Fitness Evolution

4.1.3 3D Fitness Evolution View

This 3D visualization is an alternative of the Origin of
Fittest Individual view. In a 3D space, the fittest individual
of each generation is displayed with the help of a sphere
colored according to its origin (depending on whether the
individual was created through mutation, recombination, or
initialization). Within the space, the spheres are primarily
arranged according to a helix. During the EA’s run, the he-
lix grows by adding new spheres till the fitness value of the
fittest individual changes. Then, the helix is displaced to a
new position and it can continue to grow, cp. Figure 3.

Note that this is a first step of the development of a
novel 3D visualization for EAs. Our intent is to integrate
more information into a 3D view, e.g., specific properties of
the fittest individuals. Using a helix allows a space-filling
design with the chance to add new features relatively easy.
We have used an own separate window (no tab) for imple-
mentation reasons.

4.2 Features

EAVis offers a rich set of views which helps the user to get
a very good overview and insight into the large amount of
data produced by evolutionary algorithms. Using a prede-
fined family of interfaces (cp. Section 5) the tool facili-
tates the integration of new implementations of any prob-
lems that are solved by evolutionary processes. This ex-
tensibility together with the possibility to embed problem-
dependent phenotype views (see below) are important is-
sues. They distinguish our tool from the most other visu-
alization systems that we know. Further important features
are briefly summarized in the following list:

• Generation Control: An important feature of EAVis is
the ability to control the entire evolutionary process
on-line with the help of a graphical user interface.
When a user-defined EA is registered with the tool,
the user can activate several running modes or start
new runs via toolbar buttons.

• Comparison of Multiple Runs: Each run can be
stopped at any time and archived by clicking on the
floppy disk symbol in the toolbar. The Multiple Runs
view can display this data for further investigation and
comparison with other runs.

• Phenotype: There is also a support for making appli-
cation specific visualizations and weaving them into
the tool. Each EA that registers with our visualization
tool can have one or more phenotype visualizations
of individuals. These visualizations can be accessed
through the menu bar Special Views of EAVis. This is
specifically interesting for complex EAs, where cer-
tain properties cannot be depicted in an appropriate
way by means of facilities provided by EAVis.

In a previous work [15], we have visualized an evolu-
tionary computation on the basis of neural networks.
These neural networks should learn complex tasks,
such as the wing stroke of a bird. A simulation of
the wing stroke of the fittest individual was displayed
in a separate phenotype view.

• Parameter Adjustment: Of course, the main aim of all
visualizations is to facilitate the understanding of the
underlying EA which allows to alter strategy parame-
ters and to achieve a higher efficiency. Fully automatic
adjustments of the strategy parameters are not imple-
mented yet but this is a challenging feature that we
plan to implement in future versions.

5 Implementation Aspects

EAVis was implemented in Java using the Java3D API for
the development of the 3D Fitness Evolution view. As the
aim of this tool is not only to provide the visualization of
EAs but also to allow the complete control of the EA dur-
ing its run, it was a necessity to support an interface be-
tween the EA to be visualized and the EAVis software it-
self. Therefore, a number of abstract interface classes was
developed. Each implementation of a specific EA has to
implement these abstract classes in order to meet the re-
quirements that allow registration and handling the algo-
rithm through the EAVis tool. In detail, there are three ab-
stract Java classes that have to be derived from:

• EAIndividual: This class holds phenotype and geno-
type information of each individual.

• EAPopulation: It provides utilities to set up and ma-
nipulate a population of individuals (e.g., calculation
of the next generation or initialization).

• EAConfig: Here, all algorithmic details are imple-
mented that are subsequently used by the population
in its evolution process.

The description of the Population view (see Sec-
tion 4.1.2) poses the question how the binary distance be-
tween two individuals of our running example is computed.



In this view, the y-axis represents the fitness and the x-
axis represents the binary distance of the individual’s al-
leles from the alleles of the fittest individual and therefore
providing an indication for similarity with the fittest indi-
vidual. The binary distance between two individuals i and
j is calculated with the following function:

∆δγ(i, j) =
a(i, j) + δe(i, j)

a(i, j) + δe(i, j) + γ(b(i, j) + c(i, j))
(3)

In this context, a(i, j) returns the number of prop-
erties that both individuals have; e(i, j) is the number of
properties that neither has, and b(i, j) respectively c(i, j)
return the number of properties that one has but the other
does not and vice versa. Depending on the weight factors
δ, γ ≥ 0, the function takes into account the absence of
certain properties in both individuals or the existence of a
certain property in one individual and the lack of this prop-
erty in the other. The function ∆δγ returns 1 if the two
compared individuals are identical and 0 if there is no sim-
ilarity between them.

6 Conclusion

In this paper, we have presented a visualization tool for evo-
lutionary computations that can facilitate the understand-
ing of evolutionary algorithms by using several coordinated
views. It allows users to watch each generation step of the
underlying EA from different viewpoints. Among other
things, this is also important for a good setting of the strat-
egy parameters to gain better performance values.

The development of EAVis is an ongoing work. In
the future, we plan to extend and to improve the 3D Fitness
Evolution view using InfoVis techniques. Furthermore, the
on-line adaption of the strategy parameters is a challenging
task with a high potential in practice.

From a user-centered view, EAVis was already ob-
served as learning aid very positively and could also be
used as lecture supplement: One of our students had em-
bedded an EA into EAVis without any problems. His EA
had computed a TSP tour for an optimization course (im-
plemented without phenotype view). Future evaluations are
planned to prove the efficiency of EAVis.
Acknowledgements: I would like to thank Thomas Egger
for implementing the EAVis tool and for many constructive
discussions.
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