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Figure 1: GUI of CluMa-GO. On the left hand side, the used Gene Ontology is represented in the GO view (Levels Layout). The green circle
represents the currently selected GO term whereas the visible edges represent its relationship to subterms. On the right hand side, the clustering
view is located.

1 INTRODUCTION

Ontologies and hierarchical clustering are both important tools in
biology and medicine to study high-throughput data such as tran-
scriptomics and metabolomics data. Enrichment of ontology terms
in the data is used to identify statistically overrepresented ontol-
ogy terms, giving insight into relevant biological processes or func-
tional modules. In this paper, we focus on Gene Ontology (GO) [4]
which is an on-line database that provides a set of structured vocab-
ularies (ontologies) for the annotation of genes, gene products and
sequences. Hierarchical clustering is a standard method to analyze
and visualize data to find relatively homogeneous clusters of experi-
mental data points [3]. It is a statistical method for finding relatively
homogeneous clusters and is based on two steps: computing a dis-
tance matrix containing the pairwise distances between biological
objects and a hierarchical clustering algorithm. Both, ontologies
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as well as hierarchical clustering, are widely used to support the
analysis of molecular-biological data obtained by high throughput
technologies and lead to huge data sets of DAG- [1] and tree-like
structures. To help analyzing this data, often two views are de-
sired: visualizing a large data set (such as the expression levels of
the genes in an organism) in the context of an ontology (such as
the GO) and in the context of a clustering of the data (such as an
hierarchical clustering).

Due to the complexity and huge amount of data to be visual-
ized, we visualize the GO DAG and the clustering in two sepa-
rated and coordinated views [6]. We use a transcriptomics data set
representing different expression levels of genes in E. coli. The
initial data set has been reduced to 7,312 genes, which are signifi-
cantly up- or down-regulated. The hierarchical clustering has been
computed based on the distance of the expression levels of genes
at different time points. The resulting binary tree of the cluster
analysis, called Cluster Tree, has 14,623 nodes (7,311 non-terminal
nodes and 7,312 leaves) and 14,622 edges. Furthermore, the GO
is a DAG consisting of more than 34,000 inner nodes and a large
amount of leaf nodes depending on the organism under considera-
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tion. We only consider the nodes representing the 7,312 genes and
those nodes, which are on paths between the GO root node and leaf
nodes (genes). Thus, the final GO data set consists of 10,042 nodes
and 24,155 edges. The graph has one root, 2,729 non-terminal
nodes and 7,312 other nodes, which are not all leaves of the GO.
There is also a considerable amount of unconnected nodes as not
all genes are assigned to GO terms and therefore do not form part
of the DAG.

Our main challenge was to relate two huge data sets of differ-
ent nature to each other: a DAG and a binary tree. Both graphs
are technically independent from each other as they have differ-
ent node and edge IDs. However, the graphs share identical labels
for terminal nodes (genes), which can be used to compute a map-
ping: for each interactively selected node in the GO visualization,
a corresponding subtree in the Cluster Tree is determined. We use
brushing techniques to show the mapping between both and imple-
mented specific representations for the GO DAG and clustering that
address the aforementioned challenges. A complete overview of the
user interface of our prototype implementation, called CluMa-GO,
is shown in Figure 1.

2 VISUALIZATION APPROACH

We took inspiration from pixel-based approaches, which usually
cope with large data sets [5]: GO nodes are represented by col-
ored pixels (node pixels), whereas edges are hidden to avoid clut-
ter. Edges are shown optionally in case the user selects a particu-
lar GO term (non-terminal node) for further exploration. We also
implemented a simple edge bundling algorithm to reduce clutter.
Red pixels represent leaf and light-blue pixels non-terminal nodes.
DAGs can be hierarchically layered and have a “flow direction” as
there are no cycles. This allows us to place the nodes into sev-
eral layers, which provide some insight into the topology of the GO
graph as shown on the left hand side of Figure 1. The user can zoom
in at the specific layer and scroll up or down between three layers
simultaneously if needed.

We have implemented two different layering approaches. The
first one (Levels Layout) places the leaves (red pixels) and non-
terminal nodes (light-blue pixels) into their corresponding layer de-
pending on their graph-theoretic distance [2] from the source node
(root). Moreover, leaf nodes are distributed in the left part of their
assigned layer; all other nodes are arranged on the right. This fea-
ture gives us further insight into the topology of a specific layer by
gaining information about the distribution of leaf nodes and non-
terminal nodes on a particular layer. Figure 1 shows an example of
this layout strategy in the GO view on the left hand side. Although
the resulting visualization looks to mimic bar charts, the number
of leaves cannot be precisely compared between different layers,
as the area the red node pixels (leaves) cover is not proportional to
the total number of leaves in each layer. But, it is proportional to
the sum of nodes in that particular layer. The spatial arrangement
of the node pixels within a layer, except the placing of leaves and
non-terminal nodes in specific regions, is random.

Our second layering approach (Bottom Layout) is similar to the
first one in terms of placing the nodes into corresponding layers
based on the distance from the source node and random distribu-
tion of the node pixels within each layer. However, all leaves are
placed into one single layer at the bottom of the GO view, i. e., in the
layer with the highest number. This approach gives insight into the
distribution of nodes among different layers without the distraction
of the leaves, thus enriching the perception of the graph topology.

The challenge with clustering visualizations is that the applica-
tion of conventional tree drawing algorithms would produce rather
high tree drawings or wide ones. We have noticed that the trees
in our data sets are particularly high and unbalanced with not so
deep branches (subtrees) and decided to take this disadvantage of
typically space-consuming drawings and turn it into an advantage

Figure 2: Subtree (branch) view. The more detailed view of the se-
lected branch (green box glyph) is visualized as a dendrogram. Cir-
cles represent single nodes, whereas a box in the background repre-
sents a specific subtree (branch) of the Cluster Tree.

when dealing with large trees of such nature. We decided to use
those nodes and edges that form the longest path that connects all
branches as a “backbone” for our Spiral Tree Layout. We repre-
sent this backbone as a spiral, thus preserving space and giving us a
possibility to show the complete tree in one view. We implemented
this space-filling tree visualization approach, which deals particu-
larly with large unbalanced binary trees. The direction of the flow
in the spiral is counter-clockwise from the center towards out as
shown in Figure 1 on the right hand side.

The subtrees connected to the backbone are aggregated into box
glyphs as the data set is too large. Thus, we allow a specific amount
of abstraction in our visualization approach: each small box glyph
attached to the spiral in Figure 1 corresponds to one subtree branch-
ing out from the backbone with an angle of 135◦ from the verti-
cal. The size of a box glyph represents the number of nodes of the
corresponding subtree. This approach helps to identify interesting
patterns of distributions of subtree branches in the clustering. To
support a deeper analysis, the user can explore the details of each
subtree visualized in the spiral. This is done by clicking on a box
glyph. CluMa-GO displays then the half-transparent tree visualiza-
tion widget with two possible dendrogram layouts: a radial method
(see Figure 2) and a so-called HV-drawing method as well.
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