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Figure 1: A prototype system for our visual analytics method using interactive dimensionality reduction methods to
analyze multivariate time-series data. The system consists of four parts: (a) the UMAP result plot depicting latent
patterns extracted from data; (b) the domain plots of (b1) time and (b2) instance domains, which helps understand
clusters identified interactively (note: b2 is grayed out as it is not used when the time axis is selected); (c) the ULCA
result plot supporting comparative analysis of the clusters; and (d) the contribution plots visualizing information
necessary to understand the comparative analysis result.

ABSTRACT

One advancing machine-learning-based analysis approach for multi-
variate time-series data is representing data as a third-order tensor
and then applying dimensionality reduction (DR) methods. In this
work, we introduce a visual analytics method that employs multiple
interactive DR methods to support both extraction and interpretation
of latent patterns of multivariate time-series data. Our method first
allows analysts to select an analysis focus from three axes: instance,
variable, and time axes. Then, the method applies a multi-step DR
method to produce a 2D scatterplot that depicts latent patterns of the
selected axis’s elements (e.g., time points). Afterward, the analysts
interactively investigate data groups that appeared in the plot with
a DR method designed for comparative analysis. The method can
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be further applied iteratively to perform more precise and detailed
analyses. We implement a prototype system and demonstrate the
effectiveness of our method by analyzing supercomputer log data.

Keywords: Visualization, tensor data, dimensionality reduction,
tensor decomposition, interpretation, comparative analysis

1 INTRODUCTION

Multivariate time-series data can model various social and scientific
phenomena involving temporal changes. With the advancement
of sensing, logging, and storage technologies, multivariate time-
series data is being collected from a vast amount of sources with
high temporal granularity, as seen in the fields of biomedicine [25],
meteorology [12], manufacturing [26], and high-performance com-
puting [19, 22, 23]. While such complex multivariate time-series
data can be useful to uncover important patterns that lie in target-
ing phenomena, its complexity at the same time makes performing
analyses and gaining insights challenging.

To address this challenge, tensor decomposition [14] and dimen-
sionality reduction (DR) methods [2] have been developed. These
machine learning methods represent multivariate time-series data
as a third-order tensor with axes of (1) instance, (2) variable, and
(3) time and aim to extract a small number of latent features that
characterize the data. Since understanding of patterns seen in latent



features is further needed to gain analytical insights [4], researchers
have investigated the conjunction use of interpretable tensor decom-
position or DR methods and interactive visualizations [7, 10, 16].

In this work, we contribute to the human-in-the-loop machine
learning approach using visual analytics and interpretable DR meth-
ods to analyze multivariate time-series data. Our new method en-
hances an approach used in the MulTiDR framework [10], where
three DR methods are used for different purposes: data compres-
sion, latent pattern extraction, and latent pattern analysis. Our main
enhancement is in the latent pattern analysis. MulTiDR utilizes
contrastive learning-based DR method [1] (specifically, ccPCA [9])
to assist analysis of latent patterns. However, this method is to
investigate the patterns only from one limiting aspect. We instead
modify and employ a flexible comparative analysis method [11]
to examine the patterns from multiple aspects, such as factors that
make temporal patterns similar or dissimilar.

Moreover, we improve an analysis workflow suggested in the
MulTiDR framework to mitigate analytical drawbacks in the use of
DR methods. Applying DR to multivariate time-series data usually
causes severe data compression since DR needs to compress many
dimensions derived from two tensor axes (e.g., 10 variables and 100
time points produce 1000 dimensions). Our workflow includes a
step for an interactive selection of a subpart of the tensor of interest
based on initial findings gained from exploratory analysis. Based
on this selection, our workflow applies the DR methods again to the
selected subtensor to refine the results while reducing the amount of
data compression.

Our method is designed for analysts working with high-
dimensional time-series data, who have a basic understanding of
dimensionality reduction and data visualization. To demonstrate the
effectiveness of our method, we analyze supercomputer operational
logs collected from the K computer [18] with an operational staff
who meets the above requirements as an intended user.
Contributions. The primary contributions of this paper are:
• Improvement of the latent pattern analysis in the MulTiDR

framework by integrating an interactive comparative analysis
method [11];

• Iterative analysis workflow to reduce the undesired influence from
data compression; and

• An analysis of a supercomputer operational log dataset conducted
in collaboration with a domain expert.

2 RELATED WORK

We discuss a closely related approach to our work: feature extraction
and analysis using (1) tensor decomposition and (2) DR methods.
For the broader discussion of visualization of third-order tensors,
refer to Bach et al.’s survey [3].

2.1 Feature Extraction Using Tensor Decomposition
Analogous to matrix decomposition, tensor decomposition [14] trans-
forms a tensor into a combination of simpler tensors and matrices.
Although tensor decomposition summarizes the original tensor, ana-
lyzing the decomposed result itself is a non-trivial task. To address
this analysis challenge, visual analytics frameworks have been intro-
duced to support the understanding of tensor decomposition results.
These frameworks usually focus on an analysis of spatio-temporal
data (i.e., represented as a third-order tensor) and enable exploratory
data analysis by visualizing pre- and post-decomposition tensors and
matrices. For instance, TPFlow [16] utilizes tensor decomposition
to optimally slice a third-order tensor into homogeneous partitions
and extract meaningful patterns along instance, variable, and time
axes. TPFlow then depicts information on the partitions with visu-
alizations suitable for each axis (e.g., line charts for the time axis).
Similarly, Voila [5] uses tensor decomposition to detect anomalies
from large-scale spatio-temporal data and visualizes the differences
between factor matrices produced by the decomposition to highlight

abnormal temporal changes. The existing visual analytics frame-
works focus on the extraction of important features or elements from
third-order tensors [10]. In our work, we want to not only extract
such features and elements but also uncover latent patterns among
elements (e.g., groups of similar time points) by using DR methods.

2.2 Multivariate Time-Series Data Analysis with Dimen-
sionality Reduction

DR methods have been utilized to visually analyze multivariate time-
series data [7, 10, 13, 20, 24]. DR methods are often applied to a
matrix of instances and variables at each time point and then the pro-
duced set of DR results is visualized with animation or juxtaposition
to show temporal changes. Such DR application examples include
Temporal MDS [13], Dynamic t-SNE [20], and Landmark Dynamic
t-SNE [24]. However, relying on animation or juxtaposition makes
it difficult to find patterns such as outliers or similar time points.

To visualize similarities of all elements of a user-selected axis (i.e.,
instances, variables, or time points) in one 2D scatterplot, Fujiwara
et al. [10] introduced MulTiDR, a visual analysis framework using
a two-stage DR process. In MulTiDR, the first stage compresses a
third-order tensor into a matrix by reducing the dimensionality of
one axis into one with a DR method designed for data compression
(e.g., principal component analysis or PCA). From this matrix, the
second stage produces a 2D projection. This approach supports
the extraction and interpretation of latent patterns of multivariate
time-series data. However, this approach has a potential drawback:
excessive DR in the first stage may lead to the loss of important
information. To address this issue, Fujita et al. [7] designed a multi-
step DR method. Their method allows analysts to select elements of
interest (e.g., time points) at an intermediate stage of DR processes
to reduce the size of an analyzing tensor. Our work introduces a new
method by adapting and enhancing MulTiDR and the multi-step DR
method to support more flexible and precise analysis of DR results.

3 METHOD

We design an interactive DR method to extract and review latent
patterns of a third-order tensor representing multivariate time-series
data. To design an analysis workflow of our method, we utilize the
MulTiDR framework [10] while increasing analysis flexibility of
each step in the MulTiDR framework. With this enhanced flexibility,
our method can more actively involve analysts’ knowledge or interest
when generating DR results. This involvement of analysts allows a
more thorough understanding of extracted latent patterns as well as
mitigates the influence of excessive data compression by DR.

Fig. 2 provides an overview of our method. From a third-order
tensor, our method first extracts and visualizes latent patterns by
utilizing a multi-step DR method [7] (Fig. 2a). In the next step, an
analyst investigates clusters seen in the visualized latent patterns
(Fig. 2b). For this step, our method utilizes an interactive DR method
designed for cluster comparison, specifically, unified linear compar-
ative analysis (ULCA) [11], and provides auxiliary visualizations.
Afterward, based on their interest, analysts can apply the extraction
of latent patterns to a subpart of the tensor and repeat the same
procedure of the latent pattern analysis. This analysis loop allows
iterative reduction of the size of the analyzing tensor to refine the
DR results. To support this exploratory data analysis, our method
provides an interactive visual interface, as shown in Fig. 1.

The main differences from the MulTiDR framework are (1) en-
hancing flexible latent pattern analysis utilizing ULCA (Fig. 2b),
instead of ccPCA [9] used in the MulTiDR framework; (2) inte-
grating an iterative analysis loop to select subtensors and refine DR
results (the arrows between Fig. 2a and Fig. 2b); and (3) providing a
visual interface that supports our new analysis workflow (Fig. 1).



Figure 2: Overview of our method: (a) multivariate time-series data represented as a third-order tensor is projected in a 2D space
utilizing a multi-step DR method; (b) patterns in the projected result are investigated through interactive comparative analysis; and
these analysis steps are iteratively performed as annotated by 8⃝.

3.1 Tensor Representation of Multivariate Time Series

Multivariate time-series data consists of three aspects: (1) instances,
(2) variables, and (3) time points. In this study, we assume all
instances and variables share the same set of time points. Such data
can be modeled as a third-order tensor where three axes correspond
to instances, variables, and time points.
Notation. Following the conventions [14], we denote scalars, vec-
tors, matrices, and tensors with lowercase (e.g., x), boldface low-
ercase (e.g., x), boldface uppercase (e.g., X), and boldface Euler
script (e.g., XXX) letters, respectively. We use indices s = 1, . . . ,S,
v = 1, . . . ,V , and t = 1, . . . ,T for instances, variables, time points,
respectively. S, V , and T are axis lengths. In this context, a third-
order tensor is described XXX ∈ RS×V×T .

3.2 Latent Pattern Extraction

Our method first extracts latent patterns from a third-order tensor.
For this extraction, we employ a procedure similar to the multi-step
DR used by Fujita et al. [7] as it produces latent patterns that can be
visualized as a 2D scatterplot. By visualizing latent patterns in a 2D
scatterplot, our method enables analysts to interactively investigate
the extracted patterns (e.g., similar instances or time points).

The latent pattern extraction has three steps: tensor unfold-
ing [14] to convert a tensor to a matrix (Fig. 2 1⃝), DR on the matrix
(Fig. 2 2⃝), and visualization of the DR result (Fig. 2 3⃝).

Tensor unfolding. Tensor unfolding converts a tensor XXX to a
matrix X so that any DR method can be applied. To perform tensor
unfolding, analysts first select one axis of a tensor. Fig. 2a 1⃝ shows
an example of tensor unfolding when the instance axis is selected. By
slicing XXX along one of the non-selected axes, we obtain S matrices
of size T ×V in Fig. 2a 1⃝. These matrices are then concatenated
and generate a matrix with S rows and (T ×V ) columns.

Dimensionality reduction. We apply DR to the unfolded matrix
X to extract 2D latent patterns. As a DR method, we use UMAP [17]
due to two reasons. First, multivariate time-series data may have
complex relationships among instances, variables, and time points;
thus, using a DR method that can capture nonlinear patterns such as
UMAP is reasonable. Second, multivariate time-series data tends to
have a large data size, and UMAP’s high computational efficiency is

suitable for interactive analysis. Through the DR process, the matrix
X is transformed into a 2D matrix Y (e.g., Y ∈ RS×2 in Fig. 2).

Visualization. We visualize the 2D matrix with a scatterplot, as
shown in Fig. 1a. Due to the use of UMAP, similar elements are
placed closer together in the scatterplot. Consequently, by reviewing
the scatterplot, we can find patterns such as clusters and outliers.

3.3 Latent Pattern Analysis
Analysis of latent patterns extracted by DR requires (1) identifying
and (2) characterizing clusters [4]. In our method, an analyst visually
identifies clusters from the scatterplot and manually labels them
(Fig. 2 4⃝). Afterward, our method helps the analyst characterize
the identified clusters by utilizing a comparative analysis method in
conjunction with visualizations (Fig. 2 5⃝– 7⃝). We describe how our
method helps analysts characterize clusters.

3.3.1 Comparative Analysis of Clusters of Tensors
To analyze the identified clusters, we utilize a method called uni-
fied linear comparative analysis (ULCA) [11]. ULCA integrates
two DR schemes: discriminant analysis and contrastive learning [1].
Discriminant analysis and contrastive learning help uncover differ-
entiating factors of clusters and more abundant factors in one cluster
than others, respectively. By incorporating both schemes, ULCA
can flexibly find various essential factors such as the similarity and
dissimilarity of clusters. In addition, ULCA is a linear DR method,
and the result obtained by ULCA is easy to interpret by referring to
a projection matrix (see the description of ULCA below for details).

After labeling clusters, from the original tensor XXX, our method
extracts subtensors XXX1, . . . ,XXXK , each of which corresponds to one
cluster. Here K denotes the number of selected clusters. For ex-
ample, in Fig. 2b, three clusters are selected and correspond to XXX1,
XXX2, and XXX3. As ULCA can be only applied to a matrix, we apply
tensor unfolding to the subtensors (Fig. 2 5⃝) and generate a subma-
trix Xi corresponding to XXXi where i = {1, . . . ,K}. Afterward, the
submatrices are projected into a 2D space with ULCA.

Unified Linear Comparative Analysis (ULCA). We provide
brief introduction of ULCA [11]. ULCA enables the interactive
adjustment of variance within and distance between clusters by
incorporating discriminant analysis and contrastive learning. ULCA



performs the optimization below to derive a projection matrix M.
Then, ULCA transforms a submatrix Xi into a low-dimensional
representation Zi by computing Zi = XiM (Fig. 2 6⃝). The resultant
coordinates of Zi are called principal components (PCs).

ULCA’s optimization problem can be written as follows:

max
M⊤M=ID′

=
tr(M⊤C0M)

tr(M⊤C1M)
(1)

C0 = ∑
K
i=1 wtgi

Cwii +∑
K
i=1 wbwi Cbwi + γ0ID (2)

C1 = ∑
K
i=1 wbgi

Cwii + γ1ID (3)

where D and D′ are the numbers of dimensions of Xi and Zi, re-
spectively (e.g., D = T ×V and D′ = 2 in Fig. 2 6⃝). ID and ID′
are identity matrices of size D and D′. Cwii is a within-cluster co-
variance matrix of the i-th cluster (i.e., Cwii = X⊤i Xi/Ni where Ni
is the number of rows of Xi). Cbwi is a between-cluster covariance
matrix related to the i-th cluster (i.e., Cbwi = (µµµ i−µµµ)(µµµ i−µµµ)⊤/Ni
where µµµ and µµµ i are the centroids of X and Xi). wtgi

, wbgi
, and wbwi

are weights to control how much the i-th cluster’s variance should
maintain (wtgi

) or eliminate (wbgi
) as well as how much the i-th

cluster should be separated from the other clusters (wbwi ). Lastly,
γ0 and γ1 are set to zero by default, while ULCA sets γ j = 1 when
tr(M⊤C jM) = 0.

ULCA’s analysis flexibility stems from the adjustable weights,
wtgi

, wbgi
, and wbwi . Fig. 3 demonstrates how the within-cluster and

between-cluster variances change by adjusting the weights. Fig. 3a
shows the weight parameters that minimize all within-cluster vari-
ances and maximize the between-cluster variances, which yield the
same result as linear discriminant analysis (LDA). In Fig. 3b, by
decreasing wbw2 and wbw3 , the distance between Clusters 2 and 3 is
reduced while maintaining the separation from Cluster 1. Fig. 3c
tries to maintain the between-cluster variances and Cluster 3’s within-
class variance as much as possible while reducing the other clusters’
within-class variances. By adjusting the weight parameters, for
example, analysts can identify factors that make all clusters differ-
ent (e.g., Fig. 3a), factors that significantly differentiate one cluster
from others (e.g., Fig. 3b), or factors that are salient in one cluster
while differentiating all clusters (e.g., Fig. 3c). Note that, in contrast
to ULCA, ccPCA employed by MulTiDR can only compare two
groups (e.g., Cluster 1 and others) and corresponds to ULCA with a
fixed parameter (i.e., wtg=(1,1), wbg=(0,1), wbw=(0,0)), limiting
latent pattern analysis flexibility.

As in other linear DR methods, ULCA provides the interpretabil-
ity of the results. Each column of a projection matrix, M, indicates
the original dimensions’ contributions to each PC. By referring to
these contributions, analysts can grasp which dimensions are highly
related to clusters’ differences, similarities, etc. Our approach be-
gins by applying a nonlinear DR method (specifically, UMAP) to
uncover latent patterns. The rationale behind using nonlinear DR
is its ability to effectively identify comparison groups in complex,
high-dimensional data. Then, as long as the comparison groups
are clearly defined, our subsequent interpretation using ULCA pro-
vides consistent interpretability, regardless of the underlying data
characteristics or the employed nonlinear DR method.

Automatic PC rotation adjustment. One limitation of ULCA
is the arbitrary rotation of PCs caused by its optimization solver
(refer to Fujiwara et al.’s work [11] for details). To address this
limitation, we introduce automatic adjustment of the rotation of
PCs. The adjustment first applies linear regression to the projected
elements and obtains the fitted linear line of the direction vector, v.
Then, the adjustment rotates PCs by updating Zi and M as follows:
Zi← Ziv/||v|| and M←Mv/||v||.

This adjustment also provides an analytical benefit. As the adjust-
ment rotates PCs such that the fitted line direction matches with the
first PC, elements are also rotated to have the highest scatteredness
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Figure 3: Examples of ULCA results using different weights.
We apply ULCA to the Wine dataset [6].

along the first PC. The direction related to the high scatteredness
can be expected to correspond to analytically interesting patterns,
such as cluster separations. Consequently, the interpretation process
can often focus on the first PC.

3.3.2 Visualizations for Comparative Analysis
Our method provides a set of visualizations that aid interactive anal-
ysis of latent patterns using ULCA. The visualizations include a
domain plot depicting the distribution of elements in their domain
(Fig. 1b), a scatterplot of the ULCA result (Fig. 1c), and a contribu-
tion plot showing the information of the projection matrix (Fig. 1d).

Domain plots. To analyze the identified clusters, we often want
to understand what kind of elements are included in each cluster.
Domain plots are designed to support this task. We provide two dif-
ferent plots for (1) time points (Fig. 1b1) and (2) instances (Fig. 1b2).

When the time axis is selected during the latent pattern extraction
(Sec. 3.2), the time domain plot informs which time points are
included in each cluster. The plot uses x- and y-coordinates to
represent timestamps and cluster IDs, respectively.

The instance domain plot depicts the information related to in-
stances when the instance axis is selected. Such information can be a
spatial distribution of each cluster’s instances when the location data
is available. For example, when analyzing supercomputer log data,
we can show locations of system nodes corresponding to instances.
The instance domain plot facilitates intuitive understanding by visu-
alizing the data in its original physical space, allowing analysts to
interpret clusters in context of their domain knowledge. Unlike the
time domain plot, the instance domain plot should be tailor-made
based on a dataset (e.g., a map for geographical data and a compute
rack position for supercomputer log data). Tailoring the instance
domain plot to a specific dataset is straightforward and can be eas-
ily implemented using a plotting library (e.g., Bokeh). MulTiDR
provides open-source examples of such tailored plots [10].

ULCA result and contribution plots. We visualize PCs ex-
tracted by ULCA as a scatterplot (Fig. 1c). Contribution plots
(Fig. 1d) convey the information of the projection matrix, M, which
is necessary to understand the PCs. We apply a different design
based on the selected axis for the latent pattern extraction.

When the time axis is selected, the original dimensions corre-
spond to the combination of instances and variables (e.g., Fig. 2 6⃝).
For each variable, we color-code the corresponding values in M with
instances’ spatial locations, as shown in Fig. 1d1.

In contrast, selecting the instance axis produces X with dimen-
sions of the combination of time points and variables. For this case,
we visualize M as multiline charts, where each polyline corresponds
to one variable, as shown in Fig. 1d2.

3.4 Iterative Update
We enhance the analysis workflow of MulTiDR by adding an it-
erative update step where our method performs the latent pattern
extraction based on an interactively selected subtensor (Fig. 2 8⃝).



The subtensor can be one of the identified clusters in the previous
steps or can be newly selected from the UMAP and ULCA results.

This step is useful to mitigate excessive data compression, which
is MulTiDR’s main limitation stemming from the high dimension-
ality of the unfolded tensor (e.g., 10 variables and 100 time points
produce 1000 dimensions). For example, the analyst can select a
part of instances for further analysis from an initial exploration. In
the next iteration, the analyst can investigate similarities of time
points of the corresponding subtensor. For instance, when the ana-
lyst selects XXX3 in Fig. 2, an unfolded tensor for this second iteration
can be a matrix with size T × (S3×V ), which has much smaller
dimensions than T × (S×V ) when S3 ≪ S. Consequently, DR is
performed only on S3×V , instead of S×V .

3.5 System Implementation
We have developed a web-based visual interface (Fig. 1), consisting
of the aforementioned plots for latent pattern extraction and analysis.
Each plot is fully linked and provides necessary interactions to
perform an analysis workflow shown in Fig. 2, such as the adjustment
of ULCA parameters and selection of points. Both back-end and
front-end are implemented with Python with Bokeh.

4 CASE STUDY

We demonstrate the effectiveness of our method by analyzing a su-
percomputer operational log dataset. This dataset has been analyzed
in previous studies [7, 10]. The analysis of the same dataset can
facilitate the evaluation of our method’s improvements. The case
study has been performed with an operational staff working for the
supercomputer center.

Dataset. We analyzed the daily operational log dataset collected
from a hybrid water/air-cooled supercomputer, named the K com-
puter. The dataset consists of daily average temperature measure-
ments collected at 864 compute racks. The racks received cooled
water and air to extract the heat generated by the compute nodes.
Four temperature measurements are used for our analysis: intake
air temperature (AirIn), exhaust air temperature (AirOut), input
cooling water temperature (Water), and the average temperature of
CPUs (CPU). While the previous study [7] focused only on one
fiscal year, we analyzed three consecutive fiscal years (April 2014
to March 2017). The resulting third-order tensor consists of 864 in-
stances/racks, 4 variables/measurements, and 1,086 time points/days
(i.e., 3,753,216 elements in total).

Analysis. We performed an analysis to respond to the super-
computer center’s interest in understanding the seasonal water/air
cooling behavior during the regular operational period. Their in-
terest stemmed from the fact that the lifespan of water/air cooling
facility can be much longer than the supercomputer itself. In fact,
their cooling facility for the K computer has been reused for the
newly developed supercomputer, Fugaku [21].

Considering the interest in temporal behavior, we selected the
time axis when applying the multi-step DR. Fig. 4a shows the UMAP
result of 1,086 time points/days. We interactively selected six ap-
parent clusters and labeled them from Clusters 1 to 6. As shown
in Fig. 4b, the time domain plot highlighted all clusters mostly are
composed of contiguous days.

We first applied ULCA with parameters that generate the same
result as LDA to see distinguishing factors among all clusters. This
ULCA result (Fig. 5a) highlights that Clusters 1 and 4 are clearly
different from the other clusters. By referring to this ULCA result as
well as Fig. 4a and Fig. 4b, we decided to focus more on analyzing
Clusters 1 and 4 as these clusters have unique properties: they
are composed of a small number of time points, located far away
from others in the UMAP result, and constituted by contiguous
days with each other. Due to the analysis flexibility provided by
ULCA, the differentiating factors of these two clusters can be easily
investigated by adjusting the weight parameters. We adjusted the
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Figure 4: Latent patterns of the supercomputer operational
log dataset: (a) the UMAP result and (b) the time domain plot.
Each cluster mainly consists of consecutive days.
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Figure 5: Comparative analysis of the timestamp clusters
through adjustments of the weight parameter in ULCA. After
the adjustment (c), we see a clear separation between Clus-
ters 1 and 4 along PC 1 as well as subclusters of Cluster 4.

Ra
ck

 ID
 (n

um
be

r)

AirIn AirOut CPU Water

Rack ID (alphabet) Rack ID (alphabet) Rack ID (alphabet) Rack ID (alphabet)

Rack T32

Co
nt

rib
ut

io
n 

to
 P

C 
1

0

max

-max

Figure 6: Contribution plots for PC 1 of Fig. 5c. For all four
temperature measurements, Rack T31 shows significant neg-
ative contributions to PC 1.

weight parameters to emphasize differentiating factors of Clusters 1
and 4, as shown in Fig. 5b. The new parameters mimic a case where
LDA is applied to only Clusters 1 and 4. While this ULCA result
shows clear separation among Cluster 1, Cluster 4, and others along
PC 1, the variances of Clusters 1 and 4 are minimized—limiting
the available information related to Clusters 1 and 4. Thus, as
shown in Fig. 5c, we further adjusted weights to avoid minimizing
the variances of Clusters 1 and 4. This result still shows the clear
separations shown in Fig. 5b while revealing two subclusters within
Cluster 4. Note that the result shown in Fig. 5c cannot be derived
with the other linear DR methods such as PCA, LDA, and ccPCA.

From the above observation, we decided to review the contribu-
tions of the dimensions to PC 1, as shown in Fig. 6. We confirmed
that the significant negative contributions correspond to four tem-
perature measurements for Rack T32. This result indicates that
Rack T32 has high associations with the difference among Cluster 1,
Cluster 4, and the others as well as the subclusters of Cluster 4.

To further investigate patterns only related to Clusters 1 and 4,
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Figure 7: The second iteration of latent pattern extraction after
only selecting Clusters 1 and 4: (a) the UMAP result and
(b) the time domain plot. Each of the newly found clusters,
Clusters A–C, only consists of continuous days.
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b1) the ULCA result and contribution plots when Cluster B is
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Cluster C is made distant from others. The results indicate
that Rack E19 and Rack L07 have significant influences on
the differences of each cluster.

we utilized the interactive update our method supports (Sec. 3.4)
and extracted a subtensor corresponding to Clusters 1 and 4. This
subtensor consists of only 43 time points, which is significantly
sized down from 1,086 time points. Similar to the initial analysis
stage, we selected the time axis, producing the UMAP result and
time domain plots shown in Fig. 7. As we observed three clusters in
the UMAP result (Fig. 7a), we labeled them as Clusters A, B, and
C. From the time domain plot (Fig. 7b), we also noticed that these
three clusters only consist of continuous days.

We examined the differentiating factors of each cluster by using
various weight parameters of ULCA. Fig. 8a1 shows the ULCA
result when the parameters are set to separate Cluster B from others.
The corresponding contribution plots (Fig. 8b1) show that Racks
E19 and L07’s significantly positive and negative contributions. In

contrast, Fig. 8a2 and b2 show the ULCA result and contribution
plots when separating Cluster C from others. In this case, both Racks
E19 and L07 have significantly negative contributions.

By reviewing the temperature data for the three racks identified
through the two iterative analyses (i.e., Racks T32, E19, L07), we
confirmed that these racks had issues that prevented correct tempera-
ture measurements from July to August 2016. These results are not
found in the existing study [7] due to its limited capability of latent
pattern analysis such as cluster comparison. The analysis processes
and results demonstrate the effectiveness of our method in reviewing
an extremely large dataset (3,753,216 elements).

5 DISCUSSION

Through the case study, we demonstrated the usefulness of our
method’s analysis capabilities for a deeper understanding of large-
scale multivariate time-series data. Our method’s strengths stem
from the newly integrated comparative analysis and the iterative
analysis workflow designed to perform more precise and detailed
analysis. In fact, while performing the case study, the operational
staff was convinced regarding the effectiveness of the visual analytics
approach taken by our method.

Limitation. Our method heavily involves humans for multivari-
ate time-series analysis. While this approach can incorporate domain
knowledge, this involvement can be laborious for analysts. For in-
stance, our method requires manual selection of clusters, adjustment
of ULCA parameters, and iterative updates. Adjusting and interpret-
ing ULCA results also requires basic knowledge of ULCA. In our
case, we provided such knowledge to the domain expert through a
brief demonstration of our system, along with examples of ULCA
results (e.g., Fig. 5). In future work, we would like to reduce analysis
workload by developing recommendation systems. For example,
such systems could suggest parameter sets such that each set shows
significantly different patterns, similar to existing works [8, 15].

6 CONCLUSION

We introduced a method that conjointly uses interactive visualiza-
tion and machine learning to analyze multivariate time-series data.
As machine learning methods, we specifically employed multiple
interactive DR methods and applied them to a third-order tensor that
represents multivariate time-series data. Our method’s functional-
ity of interactive cluster identification and comparative analysis of
clusters enables flexible analysis of latent patterns. In addition, the
workflow incorporating iterative updates allows more precise and de-
tailed analysis of a specific domain of interest. We performed a case
study using supercomputer operational log data, highlighting the
effectiveness of our method. Our work contributes to demonstrating
how machine learning can help analysts review complex data (e.g.,
interactive DR-based latent pattern analysis) and how analysts can
supplement the limitations of machine learning (e.g., data reduction
involving domain knowledge).
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