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Figure 1: Examples showing people’s selection on the task: Which scatterplot (A or B) has blues and oranges that are more
separated? In this study, we aim to find which set of scatterplot features impact people’s perception in Visual Class Separation
(VCS) tasks. Yellow and purple boxes represent each participant’s answers. For example, all participants selected Scatterplot A
in the top left pair, while 8 participants selected A and the other 7 participants selected B in the bottom right.

Abstract
Multi-class scatterplots are essential for visually comparing data,
such as examining class distributions in dimensionality reduction
and evaluating classification models. Visual class separation (VCS)
measures quantify human perception but are largely derived from
and evaluated with datasets reflecting limited types of scatterplot
features (e.g., data distribution, similar class densities). Quantita-
tively identifying which scatterplot features are influential to VCS
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tasks can enable more robust guidance for future measures. We ana-
lyze the alignment between VCS measures and people’s perceptions
of class separation through a crowdsourced study using 70 scatter-
plot features relevant to class separation. To cover a wide range of
scatterplot features, we generated a set of multi-class scatterplots
from 6,947 real-world datasets. Our results highlight that multiple
combinations of features are needed to best explain VCS. From our
analysis, we develop a composite feature model that identifies key
scatterplot features for measuring VCS task performance.

CCS Concepts
• Human-centered computing→ Visualization design and
evaluation methods; Empirical studies in visualization.
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1 Introduction
Multi-class scatterplots [38] are used for a range of analytical tasks,
including examining class distributions in dimensionality reduc-
tion [18, 35, 77] and estimating the classification quality of machine
learning models [41, 73, 103]. For these high-level tasks, an analyst
must visually separate the labeled data to understand distribution
differences between different classes (e.g., determine whether two
classes are seen as (dis)similar for analytical reasoning). Following
Bernard et al.’s definition [14], a visual class separation (VCS) task
aims to quantify how well distributions of predefined classes in scat-
terplots are separated (see Fig. 1 for examples). Though this task is
related to visual clustering [1, 51], which involves perceiving and
identifying spatially proximate points (referred to as clusters), it
differs in its use of predefined (and therefore explicitly encoded)
classes. Our work aims to enhance VCS for multi-class scatterplots,
as human performance on VCS directly influences the scientific
and practical insights obtained through class comparison [2, 35].

Given the importance of VCS, developers can use various VCS
measures to guide their visualization designs [9, 79, 94]. These mea-
sures aim to predict how well people can visually separate classes
(e.g., is Class A well separated from Class B?). Developers use these
measures to recommend visually interesting pairs of variables [79],
automatically select dimensionality reduction results [9, 15, 83], and
develop perception-based dimensionality reduction methods [94].
These measures can also contribute to predicting and avoiding per-
ceptual biases when visually estimating a machine learning model’s
classification quality [73]. Despite their usefulness, existing VCS
measures are evaluated with a limited variety of scatterplots (e.g.,
classes following close-to-normal distributions) [9, 14, 79, 94]. This
limited set of evaluations raises questions as to how human percep-
tion may differ when performing VCS tasks that are beyond these
evaluation constraints. For instance, machine learning and real-
world datasets encompass non-Gaussian distributions (see Sec. 4.2),
which existing VCS models do not account for.

Scatterplots have a multitude of features that may influence VCS
performance, such as the number of points plotted, the density
of points, and shapes formed from the contours of points (Fig. 1).
Sedlmair et al.’s taxonomy [78] synthesizes these features and spec-
ulates as to how these features may influence the perception of
class separation. However, we lack guidance on how we can quan-
titatively measure each feature and evaluate its influence on class
separation. A quantitative approach can offer actionable and gener-
alizable methods to understand the influence of different features
on VCS measures and to develop more reliable metrics. Toward this
goal, this paper investigates two research questions: (RQ1) What
are the key scatterplot features that influence human perception

of VCS? and (RQ2) Do existing VCS measures align with human
perception? To answer these questions, we introduce quantitative
measures of multi-class scatterplot features related to VCS.

We conducted a crowdsourced study using 294 scatterplots across
and 70 features related to VCS. These 294 scatterplots are a subset
of the 6,947 scatterplots we generated from real-world datasets,
which cover a wide range of the multi-class scatterplot feature val-
ues. We scope our work to multi-class scatterplots with two classes
and use hue-based encoding for class information. This approach
aligns with prior methods investigating VCS measures [9, 76]. We
analyzed the data to uncover associations among visual class sepa-
ration measures, multi-class scatterplot features, and participants’
perceived class separation.

Our results highlight how features related to classification com-
plexity [58], within-class [89] attributes, and between-class at-
tributes [9] heavily impact people’s judgment on VCS tasks. Ad-
ditionally, our results highlight the need for future work to fully
understand the effect of existing VCS measures on human per-
formance. We use feature selection to derive a set of 26 features
that strongly correlate with people’s perception of class separa-
tion based on our study data and use these features to generate a
composite feature model that outperforms the state-of-the-art VCS
measure. This derived measure suggests a more robust approach to
predicting class separation and helps identify key features of data
distribution that influence separation.

The primary contributions of this paper are:
• statistical analyses that provide quantitative insights into
how human perception is influenced by multi-class scatter-
plot features;
• a composite feature model that better predicts human per-
formance than existing VCS measures;
• new quantitative measures of multi-class scatterplot features;
• a methodology to generate multi-class scatterplots and re-
sultant datasets that more comprehensively evaluate VCS
measures.

2 Related Works
We survey prior work about visual diagnostic measures, VCS mea-
sures, and human perception for scatterplots.

2.1 Visualization Diagnostic Measures
Diagnostic measures in visualization have a rich history. Early
attempts to assess and improve visualization quality focused on
graphical aspects. For example, Tufte [88] introduced the data-ink
ratio, which quantifies the proportion of a visualization’s “ink” (or
pixels) devoted to data. Similarly, the graph drawing community
developed graph aesthetics to design better layouts for node-link
diagrams, including maximum symmetry [28, 55], minimum edge
crossing [33], and minimum edge bends [82]. Brath [17] and Miller
et al. [63] advocate for diagnostic measures that can “predict suc-
cessful visualizations based on objective quantities that can be easily
measured” [63]. Since then, research has introduced various diag-
nostic measures that quantitatively capture analytical patterns in a
visualization, often termed visual quality metrics or VQMs [12, 16].
Bertini et al.’s [16] survey highlights six types of quantitative VQMs:
clustering [4, 51, 83, 97], correlation [4, 69, 83], outlier [4, 69, 97],
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complex patterns [79, 83, 97], image quality [31, 69], and feature
preservation [79, 83].

Many of these metrics are grounded in studies of scatterplots.
Scatterplots support various exploratory data analysis tasks, such as
checking correlations, outliers, clusters, and data distributions [75].
Scatterplots are also frequently used with high dimensional data,
comparing key properties of different groups within a dataset. Be-
fore performing such analytical tasks, analysts often need to select
pairs of variables from the working dataset or apply dimensionality
reduction to generate 2D scatterplots. As the number of variables
increases to tens, hundreds, or even thousands, examining all pos-
sible combinations of variables or dimensionality reduction results
becomes exceedingly time-consuming and even unfeasible. Scat-
terplot diagnostic measures can expedite the process of finding the
right relationships for comparing key groups to create scatterplots
summarizing patterns of interest.

Scagnostics [89] is arguably the most well-known scatterplot
diagnostic measure and characterizes scatterplots according to a
series of features (e.g., skewed, clumpy, convex, skinny). Variants
of scagnostics measures [24, 61, 95, 97] and interactive analysis
systems that use scagnostics [25, 97] further improve scagnostics’
robustness and add new analytical capabilities. There are also di-
agnostics measures more specifically for scatterplots generated
by dimensionality reduction methods. These measures focus on
tasks related to distances among points, such as visual clustering
tasks [1, 51] and VCS tasks [9, 79, 94].

2.2 Visual Class Separation Measures
VCS measures can help generate visualizations that effectively sup-
port visual analytics tasks [9, 15, 94]. Current VCS measures derive
from class centroid-based or nearest neighbor-based approaches.
The class centroid-based approach decides the degree of class sepa-
ration by agreement between each point’s belonging class and each
point’s closest class centroid. This approach is taken by the distance
consistency measure (DSC) [79] and its variants (e.g., density-aware
DSC) [94]. Nearest-neighbor approaches measure the degree of
class separation based on the class label of the closest points to
a given target point. This second approach selects neighbors and
computes neighbors’ class similarity using a range of metrics. Au-
petit & Sedlmair [9] noted that the best-performing overall measure
is GONG 0.35 DIR CPT, which uses a nearest-neighbor approach.
This measure selects neighbors based on a 𝛾-observable neighbor
graph [8] with 𝛾 = 0.35 and directed edges and then computes their
similarity based on the proportion of belonging to one specified
target class. Distributions consistency (or DC) [79] partitions a scat-
terplot by a grid and defines neighbors as points in the same grid
cell. Wang et al. [94] also designed a nearest neighbor graph-based
measure (named density-aware KNNG) that considers the distance
between each neighbor.

Though each existing measure is evaluated in its respective
work, subsequent studies reevaluate these measures using different
datasets [9, 78, 84]. Among these studies, Sedlmair et al.’s taxon-
omy [78] is most closely related to our work. The taxonomy applies
two existing measures, DSC and DC, to 816 scatterplots in part to
identify cases where DSC and DC did not fit the authors’ perception
of class separation. They used this analysis to derive a taxonomy

of scatterplot features that likely influence VCS tasks, consisting
of four categories (scale, point distance, shape, position) and corre-
sponding within-class and between-class factors. For example, the
combination of these parameters introduces each class’ scatterplot
area size and the variance of their sizes.

We extend the analysis introduced by Sedlmair et al. [78] through
expanded (1) scatterplot feature measures, (2) data diversity, and
(3) evaluation methodology to offer additional insight into VCS.
While the taxonomy enumerates several key multi-class scatterplot
features, these features lack methods to quantitatively measure
them. We offer a concrete implementation of these measures by
introducing a set of formal quantitative definitions. Second, the 816
scatterplots used in their study are made by applying 4 dimension-
ality reduction methods to 31 real-world and 44 synthetic datasets,
resulting in a limited coverage of feature values. We expand upon
these datasets to be more inclusive of feature variety, with a specific
emphasis on non-Gaussian distributions, while applying modern di-
mensionality reduction methods to over 800 real-world datasets to
reflect VCS situations that analysts may currently encounter. Third,
we conduct a crowdsourced study in place of the original qualitative
analysis approach to increase the generalizability of the evaluation
given the expected variance from perceptual variability [26, 57, 105].
Perceptual variability highlights variance among individuals: peo-
ple may behave differently even for the same perceptual tasks (e.g.,
information retrieval/search [22, 91]). The Axiom of Perceptual
Variability [7] implies that the two authors/coders’ judgment may
fail to account for the distribution of perceived VCS across the
wider population. A crowdsourced study (𝑛 = 150) helps account
for perceptual variability in evaluating class separability. These
extensions enable us to quantitatively evaluate how well VCS mea-
sures capture human perception in a wider range of scenarios. The
resulting models can support more robust and situationally-aware
approaches to visualization design.

2.3 Scatterplot Features in Task Perception
VCS measures quantify how well people can perceive the differ-
ences between classes. Visualization often uses knowledge and
methods from visual perception to drive design across a broad
range of tasks [30, 43, 46, 71, 96, 99, 100]. By understanding how
people perceive different patterns in their data, we can make in-
formed choices about what visualizations are most likely to support
the needs of a given task or dataset. Perceptual organization and
ensemble coding are two notable perceptual operations related to
class separability. Both perceptual operations allow us to quickly
estimate the gist of a scene, getting the big picture about a data
distribution to help orient people to group properties (see Sec. 2.2).

Perceptual organization creates hierarchical visual representa-
tions from lower-level components [93]. In class separability, the
lower-level components are individual instances (i.e., scatterplot
points) that we perceive as higher-level groups. Theories of per-
ceptual organization in visualization have been heavily influenced
by Gestalt principles of grouping [93]. For instance, the principle
of similarity states that objects with similar shapes or colors are
perceived as part of the same groups. The principle of proximity
suggests that elements that are closer to each other than they are
to other items are perceived as a group. The principle of continuity
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states that elements will group together if they lie on the same con-
tour. These principles can help us understand how humans perceive
visualizations when performing a specific task, including VCS.

Ensemble coding allows individuals to quickly extract informa-
tion on sets of objects based on the distribution of visual features
(e.g., orientation [10], size [6], or color [72]). These characteristics
are rapidly and efficiently estimated before active attention, cap-
turing group- or set-level properties rather than individual details
about a given object. Szafir et al. [81] highlight the importance of
ensemble coding in visualizations. For example, ensemble coding al-
lows people to quickly estimate the position of a group of scatterplot
points without attending to each point individually. Consequently,
people can summarize a data distribution by rapidly estimating over
an entire set of visual marks (e.g., mean size, color of glyphs [6, 53]).

A growing number of interdisciplinary studies use vision sci-
ence methods to study these perceptual operations for scatterplot
design [30, 71, 104]. Much of this research has explored how people
accomplish different scatterplot tasks [75], including those that
do not involve class information such as correlation [101], causal-
ity [100], target location [40], trend estimation [56], similar scat-
terplot search [67], and visual clustering [51, 70]. Several works
focus on multi-class scatterplot tasks that require analysis across
classes [38]. Etemadpour et al. [32] investigated scatterplot features’
influence on VCS tasks, using eye tracking to examine visual atten-
tion in 20 synthetic scatterplots varying in point density, drawing
area size, and shape to evaluate the influence of Gestalt principles
on class separation. Divis et al. [27] confirmed the influence of
each class’ density of points and drawing area size on class sepa-
ration. These studies indicate that human visual attention can act
differently based on multi-class scatterplot features. We further
investigate potentially influential features stated by Sedlmair et
al.’s [78] and analyze the discrepancy between existing VCS mea-
sures and human perceptions.

3 Multi-class Scatterplot Features
We describe multi-class scatterplot features1 to systematically
choose real-world datasets and understand these features’ con-
tribution to VCS tasks. Sedlmair et al.’s taxonomy [78] suggests
conceptual features that may influence human perception of VCS.
As Sedlmair et al. do not provide concrete implementations of these
conceptual features, we introduce a set of formal quantitative def-
initions for instantiating these features. We distinguish between
the conceptual features and the instantiated features by denoting
them with typewriter (e.g., conceptual feature) and math italic
fonts (e.g., 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒𝑑 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒), respectively (see Fig. 2). Given
how visual class separation tasks can be viewed as parallel to per-
forming classification of 2D data, we further include classification
complexity measures [45, 58] developed in the machine learning
community (see Sec. 3.2). These classification complexity measures
can extract features that Sedlmair et al.’s taxonomy does not cover
(e.g., structures of class boundaries).

1The source code implementing these features: https://github.com/takanori-fujiwara/
multiclass-scatterplot-features

3.1 Feature Implementation
The first half of our multi-class scatterplot features stems from
concepts proposed by Sedlmair et al.’s visual classification taxon-
omy [78]. This taxonomy describes 16 conceptual features, which
are binned into four categories: Scale, Point Distance, Shape, and
Position. See Fig. 2 for a visual summary.
• Scale refers to the number of points (i.e., data scale) in addition
to the proportion of the chart area covered by the points (i.e.,
scatterplot-area scale).
• Point Distance refers to the distribution of points within a class,
namely (i) how dense or sparse a class is and (ii) whether there
are outliers that are distant from the majority of the points.
• Shape refers to perceived visual configuration based on the
distribution of points within a class, specifically recognizing the
spatial relationships among the points. This category mainly
references the Gestalt grouping principles [93].
• Position describes a class’s overall position, such as the class
centroid and the margin between classes.

Each category contains two feature types: within-class features
(i.e., characteristics of each class) and between-class features (i.e.,
interactions between classes).

3.1.1 Background. We implement various multi-class scatterplot
features by extending methods employed in scagnostics [89, 98]
to multi-class scatterplots. To help understand how we applied
scagnostics for multi-class scatterplots, we provide the necessary
background for these methods below.

Outlier Removal for Measuring Features As discussed in
Wilkinson et al.’s design rationale for scagnostics [98], scatterplot
features are highly influenced by outliers. Outlier removal is nec-
essary to robustly measure various scatterplot features. We follow
Wilkinson et al.’s outlier removal procedure [89, 98]. For each class,
we first build a minimum spanning tree (MST) [39] for all points
within a scatterplot. We consider a point to be an outlier if all of its
edges in the MST have a length greater than a threshold, 𝜔 . 𝜔 is
defined as 𝜔 = 𝑃75 + 1.5(𝑃75 − 𝑃25), where 𝑃𝑖 is the 𝑖-th percentile
of the MST’s edge lengths. We apply this outlier removal procedure
before conducting any additional preprocessing or feature analysis.

Convex and 𝛼-Hull Construction Our multi-class scatterplot
features require knowing each class’s convex and 𝛼-hulls [29] to
capture visual configurations of points in a multi-class scatterplot.
After outlier removal (see above), we derive a class’s convex hull as
the smallest convex polygon that contains all points of that class.
We then compute the 𝛼-hull—the non-convex polygon enclosing all
points—with the area of the hull parameterized by 𝛼 . More precisely,
the 𝛼-hull is defined as the intersection of a set of circles with radius
1/𝛼 that contains all the points [29]. FollowingWilkinson et al. [98],
we use 𝛼 = 1/𝑃 ′90, where 𝑃

′
90 is the 90th percentile of edge lengths

of the MST after outlier removal. However, we found that when
the circle diameter is smaller than the outlier removal threshold
(i.e., 2𝑃 ′90 < 𝜔), we cannot generate a hull containing all points in
some cases. For these cases, we iteratively update 𝛼 by 𝛼 ← 0.95𝛼
until we successfully generate an 𝛼-hull.

https://github.com/takanori-fujiwara/multiclass-scatterplot-features
https://github.com/takanori-fujiwara/multiclass-scatterplot-features
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Figure 2: Visual summary of multi-class scatterplot features in Sec. 3.1. Each category (A, B, C, D) contains within-class and
between-class features. Icons adopted and modified from Sedlmair et al’s taxonomy [78]. Note that VCS Measures refers to four
existing measures: 𝐷𝑆𝐶 , 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦−𝑎𝑤𝑎𝑟𝑒𝐷𝑆𝐶 , 𝑑𝑒𝑛𝑠𝑖𝑡𝑦−𝑎𝑤𝑎𝑟𝑒𝐾𝑁𝑁𝐺
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Scagnostic Measures Although scagnostic measures [98] are de-
signed for single-class scatterplots, we can still apply these mea-
sures separately to each class in a multi-class scatterplot to capture
within-class features (e.g., quantifying the degree of outlier ratios
for each class). We can also derive various between-class features by
comparing each class’s scagnostic measures (e.g., the standard devi-
ation of two classes’ measures). We note that scagnostic measures
do not provide any information on whether the classes overlap or
not. Class overlaps are captured by our new measures (e.g., 𝑆𝑝𝑙𝑖𝑡 in
Sec. 3.1.3, 𝑂𝑣𝑒𝑟𝑙𝑎𝑝convex in Sec. 3.1.5), existing VCS measures, and
classification complexity measures (cf. Sec. 3.2). To model features
described below, we use 8 scagnostic measures (𝑆𝑘𝑒𝑤𝑒𝑑 , 𝑆𝑝𝑎𝑟𝑠𝑒 ,
𝐶𝑙𝑢𝑚𝑝𝑦 , 𝑂𝑢𝑡𝑙𝑦𝑖𝑛𝑔, 𝐶𝑜𝑛𝑣𝑒𝑥 , 𝑆𝑘𝑖𝑛𝑛𝑦 , 𝑆𝑡𝑟𝑖𝑛𝑔𝑦 ,𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 ). Though
multiple variants of these measures exist [95, 97, 98], we employ
a commonly used one from Wilkinson et al. [98]. Wilkinson et al.
suggest hexagonal binning to improve computational performance,
but we do not apply hexagonal binning as Wang et al. [97] note that
some measures are overly sensitive to this binning (e.g., 𝑂𝑢𝑡𝑙𝑦𝑖𝑛𝑔
and 𝐶𝑙𝑢𝑚𝑝𝑦).

3.1.2 Scale. Scale relates both the point number and overall area
spanned by the points.

Within-class Features
Count is defined by the number of points within a class. We adhere

to this straightforward definition and denote it as 𝑁 points.
Size is described as the spread of points in a class in terms of 2D
area. We instantiate Size as an area of the 𝛼-hull described in
Sec. 3.1.1 and denote it as 𝐴𝑟𝑒𝑎𝛼-hull.

Between-class Features
Class–Point Count is the ratio between the overall number of

points and the number of classes available in the dataset. We com-
pute this relationship, 𝑃𝑜𝑖𝑛𝑡𝑠/𝐶𝑙𝑎𝑠𝑠𝑒𝑠 , with: ∑𝑖 𝑁 points

𝑖
/𝑁 classes

where 𝑁 classes is the number of classes and 𝑁 points
𝑖

is the number
of points in the 𝑖-th Class (𝑖 ∈ {1, · · · , 𝑁 classes}).

Variance of Count is a conceptual feature that informs the dis-
persion of Count of each class. We instantiate this feature by
computing the standard deviation of classes’ Count, denoted by
𝜎𝑁

points
. When having only two classes (i.e., our study scope), the

standard deviation is equivalent to half of the absolute value of
the difference between the class counts.

Variance of Size informs the dispersion of Size. We compute
the standard deviation, 𝜎𝐴𝑟𝑒𝑎

𝛼 -hull
.

3.1.3 Point Distance. Point distance captures distributional pat-
terns in the spacing between individual points, consisting of their
density, clumpiness, and outlierness.

Within-class Features
Density is the ratio between two Scale features: Count and Size.
We instantiate this feature as 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝛼-hull = 𝑁 points/𝐴𝑟𝑒𝑎𝛼-hull.
When 𝑁 points/𝐴𝑟𝑒𝑎𝛼-hull is small, points in a class are sparsely
distributed in a scatterplot and vice-versa. However, this char-
acterization assumes uniform point distributions within the 𝛼-
hull. To characterize density in greater detail, we expand Sedl-
mair et al.’s concept of Density by considering distance distribu-
tions, which can inform whether a scatterplot class has region(s)

where points are densely packed. We achieve this by adding two
scagnostic measures—𝑆𝑘𝑒𝑤𝑒𝑑 and 𝑆𝑝𝑎𝑟𝑠𝑒 . These measures are
defined as:

𝑆𝑘𝑒𝑤𝑒𝑑 =
𝑃 ′90 − 𝑃

′
50

𝑃 ′90 − 𝑃
′
10

𝑆𝑝𝑎𝑟𝑠𝑒 = 𝑃 ′90

Based on Wilkinson et al.’s [98] definition, high 𝑆𝑘𝑒𝑤𝑒𝑑 indi-
cates a scatterplot class has significant density variance over its
area. 𝑆𝑝𝑎𝑟𝑠𝑒 determines whether points are positioned in only a
limited number of locations within the area.

Clumpiness refers to a scagnostic concept describing a class’s
inter-point distribution [89]. We use scagnostics’ 𝐶𝑙𝑢𝑚𝑝𝑦 . High
𝐶𝑙𝑢𝑚𝑝𝑦 indicates sets of points are placed relatively far away
compared to others. Given 𝐶𝑙𝑢𝑚𝑝𝑦 is also computed after the
outlier removal (Sec. 3.1.1), high𝐶𝑙𝑢𝑚𝑝𝑦 generally implies a scat-
terplot class has a locally dense region of points. For more details,
refer to Wilkinson et al. [98].

Outlier quantifies distant points from the majority of a class. We
compute scagnostics’𝑂𝑢𝑡𝑙𝑦𝑖𝑛𝑔 for each class.𝑂𝑢𝑡𝑙𝑦𝑖𝑛𝑔 is derived
when performing outlier removal. From edge lengths of the MST
used to perform outlier removal, 𝑂𝑢𝑡𝑙𝑦𝑖𝑛𝑔 is computed as the
ratio of the sum of edge lengths that are longer than𝜔 to the sum
of all edge lengths in the MST. When outlier points are extremely
far away from the other point, 𝑂𝑢𝑡𝑙𝑦𝑖𝑛𝑔 is high.

Between-class Features
Variance of Density measures the dispersion of Density across

classes. We compute the standard deviation for each correspond-
ing measure: 𝜎𝐷𝑒𝑛𝑠𝑖𝑡𝑦

𝛼 -hull
, 𝜎𝑆𝑘𝑒𝑤𝑒𝑑 , 𝜎𝑆𝑝𝑎𝑟𝑠𝑒 .

Mixture describes characteristics of points when classes are fully
or partly overlapping. Sedlmair et al. identified three patterns
in mixtures: random, equidistant, and interwoven patterns. A
random pattern corresponds to the case where there is no clear
structure seen in the overlapped area. An equidistant pattern
shows similar or equal distances among the points for each dif-
ferent class. The interwoven pattern is similar to the equidistant
pattern but differs in having similar or equal distances among
groups of points for each different class. We introduce a measure,
𝐸𝑞𝑢𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑡 , to determine whether a mixture pattern is random
or equidistant. We also discuss how 𝐸𝑞𝑢𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑡 can also be used
to identify the interwoven pattern.
To capture the equidistant pattern, for each point in a class, we
first find the smallest circle that contains a point of another class.
Let x𝑎

𝑖
denote 𝑖-th point belonging to Class 𝑎. Then, we can

compute a radius corresponding to the smallest circle at x𝑎
𝑖
that

contains any point in Class 𝑏 as follows:

𝑟𝑎→𝑏𝑖 = min{∥x𝑎𝑖 − x
𝑏
𝑗 ∥ | x

𝑏
𝑗 ∈ points in Class 𝑏}

We compute 𝑟𝑎→𝑏
𝑖

for all points in Class 𝑎, and obtain a vec-
tor, r𝑎→𝑏 , containing all corresponding radii. Then, 𝐸𝑞𝑢𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑡
between Classes 𝑎 and 𝑏 can be defined as:

𝐸𝑞𝑢𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑡𝑎,𝑏 =
2

SD
(

r𝑎→𝑏

mean(r𝑎→𝑏)
)
+ SD

(
r𝑏→𝑎

mean(r𝑏→𝑎)
)
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Using the above equation, our objective is to determine how
strictly classes within a scatterplot have an equidistant relation-
ship. To do so, we compute the standard deviations (SD(·)) of
r𝑎→𝑏 and r𝑏→𝑎 after normalizing these radii by their mean. Nor-
malization is applied to avoid impacts from scaling differences
of radii by each class. Then, we compute the average of these
two standard deviations and use its inverse as an equidistance
measure between Class 𝑎 and 𝑏, 𝐸𝑞𝑢𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑡𝑎,𝑏 . As a summary
measure, we can take a mean of 𝐸𝑞𝑢𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑡𝑎,𝑏 of all possible
pairs of classes:

𝐸𝑞𝑢𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑡 = mean
𝐸𝑞𝑢𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑡𝑎,𝑏

������ 𝑎 ∈ {1, · · · , 𝑁
classes}

𝑏 ∈ {1, · · · , 𝑁 classes}
𝑎 ≠ 𝑏


We do not introduce an instantiated method to measure the

interwoven pattern because this pattern can be captured by using
𝐸𝑞𝑢𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑡 in conjunction with 𝐶𝑙𝑢𝑚𝑝𝑦 . If an interwoven pat-
tern exists, a multi-class scatterplot will have high 𝐸𝑞𝑢𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑡
and high 𝐶𝑙𝑢𝑚𝑝𝑦 .

Split distinguishes how clearly the points in a class are split into
regions physically distanced from another class and its points.
We instantiate 𝑆𝑝𝑙𝑖𝑡 as follows: Let 𝑆𝛼-hull𝑎 be a set of points in the
𝛼-hull of Class 𝑎. We first subtract 𝛼-hull of Class 𝑏 from 𝛼-hull
of Class 𝑎: 𝑆𝛼-hull𝑎 − 𝑆𝛼-hull

𝑏
. This output is the geometric differ-

ence between both classes. Then, from this subtracted geometry,
we judge whether 𝑆𝛼-hull𝑎 is separated by Class 𝑏 into multiple
regions. Note that this judgment can be easily performed by
using existing libraries such as Shapely [37] (e.g., with Shapely,
checking whether (𝑆𝛼-hull𝑎 − 𝑆𝛼-hull

𝑏
) is a “MultiPolygon”). Then,

we define 𝑆𝑝𝑙𝑖𝑡 of Class 𝑎 by Class 𝑏 as:

𝑆𝑝𝑙𝑖𝑡𝑎,𝑏=max
(
𝛿𝑎−𝑏

area
(
𝑆𝛼 -hull
𝑎 −𝑆𝛼 -hull

𝑏

)
area

(
𝑆𝛼 -hull
𝑎

) , 𝛿𝑏−𝑎
area

(
𝑆𝛼 -hull
𝑏

−𝑆𝛼 -hull
𝑎 )

area
(
𝑆𝛼 -hull
𝑏

) )
where area(·) computes the area of an input geometry.
𝛿𝑎−𝑏 = 1 if (𝑆𝛼-hull𝑎 −𝑆𝛼-hull

𝑏
) has multiple split regions and

area(𝑆𝛼-hull𝑎 −𝑆𝛼-hull
𝑏

)/area(𝑆𝛼-hull𝑎 ) is over a threshold; other-
wise, 𝛿𝑎−𝑏 = 0. We set the threshold to 0.1 by default and use
it to measure split. The threshold helps eliminate cases where
a minor fraction of a class is split by another class. By taking
the ratio of the subtracted and original areas, 𝑆𝑝𝑙𝑖𝑡𝑎,𝑏 quantita-
tively indicates the extent these two classes are split apart. When
𝑆𝑝𝑙𝑖𝑡𝑎,𝑏 is high, one class is clearly split by another class within a
tight margin. Similar to 𝐸𝑞𝑢𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑡 , the mean of 𝑆𝑝𝑙𝑖𝑡𝑎,𝑏 from all
possible class pairs can be used as a summary measure, resulting
in 𝑆𝑝𝑙𝑖𝑡 .

3.1.4 Shape.

Within-class Features
Shape describes the perceived visual configuration of the class
points. Shape has two possible axes: isotropy and curvature.
Isotropy indicates the directional pull of the visual configura-
tion with values ranging from narrow (i.e., non-isotropic) to
round (i.e., isotropic). Curvature describes the nonlinearity of
the visual configuration. We again use scagnostic measures
as modeled features for Shape. Specifically, we use 𝐶𝑜𝑛𝑣𝑒𝑥 ,
𝑆𝑘𝑖𝑛𝑛𝑦 , 𝑆𝑡𝑟𝑖𝑛𝑔𝑦 , and𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 .𝐶𝑜𝑛𝑣𝑒𝑥 is defined as𝐶𝑜𝑛𝑣𝑒𝑥 =

𝐴𝑟𝑒𝑎𝛼-hull/𝐴𝑟𝑒𝑎convex where 𝐴𝑟𝑒𝑎𝛼-hull and 𝐴𝑟𝑒𝑎convex are ar-
eas of the 𝛼- and convex hulls of a class, respectively. 𝐶𝑜𝑛𝑣𝑒𝑥
measures the nonlinearity of the visual configuration using
𝛼-hull area. When the 𝛼-hull area is relatively small com-
pared to the convex hull, nonlinearity is high. 𝑆𝑘𝑖𝑛𝑛𝑦 is the
ratio of 𝛼-shape’s perimeter to 𝛼-shape’s area: 𝑆𝑘𝑖𝑛𝑛𝑦 = 1 −√︃
4𝜋𝐴𝑟𝑒𝑎𝛼-hull/(perimeter of the 𝛼−shape). Similar to 𝑆𝑘𝑖𝑛𝑛𝑦 ,

𝑆𝑡𝑟𝑖𝑛𝑔𝑦 measures how narrow of a width the visual configura-
tion is but differs as it is designed to have a high value when
there is no “branch-like shape” (refer to Wilkinson et al. [98]).
𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 is the squared Spearman correlation coefficient of 𝑥-
and 𝑦-coordinates of points of a class. Thus,𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 indicates
whether or not the visual configuration has a narrow, monotonic
pattern.

Between-class Features
Variance of Shape measures how different Shape is for each

class. We compute the standard deviation for each corresponding
measure: 𝜎𝐶𝑜𝑛𝑣𝑒𝑥 , 𝜎𝑆𝑘𝑖𝑛𝑛𝑦 , 𝜎𝑆𝑡𝑟𝑖𝑛𝑔𝑦 , 𝜎𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 .

3.1.5 Position. Position summarizes the relative locations of a
class overall with respect to other classes, including its centroid
and properties of its overall distribution.

Within-class Features
Centroid describes how misleading a class’s center position is for

estimating separation. Sedlmair et al. claimed that if points in a
class do not follow a Gaussian distribution, the center position
can be misled due to a mismatch between data and graphical
centers (e.g., see Fig. 2-d1). We design five measures to quantify
how misleading a class’s center position is. These five measures
cover two considerations: differences in the centroids of the hulls
of the classes and differences in the overall distribution of points.
Two measures, 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐷𝑖 𝑓𝑓 𝛼-hull and 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐷𝑖 𝑓𝑓 convex, de-
fine a mismatch between the data centroid and the visual
configuration centroid. The other three measures, 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 ,
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 , and 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , capture the
(non-)Gaussian properties of point distributions.
𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐷𝑖 𝑓𝑓 𝛼-hull is defined as the Euclidean distance be-

tween the geometric center of the 𝛼-hull of a class and
the centroid of the points in that class. Similarly, we define
𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐷𝑖 𝑓𝑓 convex by using the convex hull of a class instead
of 𝛼-hull.
Our three additional measures focus on the (non-)Gaussian

distributions of points. These three measures are inspired by
Independent Component Analysis [23, 49], where quantitative
measures of non-Gaussianity are used when decomposing a mul-
tivariate signal. For 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 , we follow Hyvärinen & Oja’s kur-
tosis definition [49]. After kurtosis is computed for each 𝑥- and
𝑦-coordinates of points in a class, we use the absolute sum of
these two kurtoses as 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 . Higher 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 infers higher
non-Gaussianity. For 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 , we first construct a
2D Gaussian distribution that mirrors the mean and variance
of points in a class. From this distribution, we draw the same
number of random samples as the number of points in the class
(i.e., 𝑁 points samples). We then compute the similarity between
the samples from the 2D Gaussian distributions and the points in
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the class by taking their histogram intersection [65]. To decide
the bin width of the histograms, we apply the method employed
by NumPy2 to combined data of the samples and points (specifi-
cally, the minimum bin width of those derived with Freedman–
Diaconis and Sturges rules). We further divide the histogram
intersection by the number of histogram bins for normalization.
Given how this process involves randomness when drawing the
samples, we repeat this process 10 times by default and define
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 as the mean of resultant histogram inter-
sections. If points in a class follow the Gaussian distribution,
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 is close to 1. 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 mea-
sures how a class’s point distribution is (dis)similar to a Gauss-
ian distribution. 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is computed in the same
manner as 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 except we substitute histogram
intersection with the Hellinger distance [44].

Between-class Features
Inner-Outer Position describes the spatial proximal relation-

ship between one class and the other classes within a scatterplot.
For example, a class can be fully surrounded by another class. To
capture this relationship between Class 𝑎 and others, we intro-
duce 𝐼𝑛𝑛𝑒𝑟𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜𝑎 , a measure that quantifies howmuch
of the class with a smaller convex hull overlaps with the convex
hull of the larger class. 𝐼𝑛𝑛𝑒𝑟𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜𝑎 can be defined as:

𝐼𝑛𝑛𝑒𝑟𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜𝑎 =
area

(
𝑆convex𝑎 ∩

(⋃
𝑏≠𝑎 𝑆

convex
𝑏

) )
min

(
area

(
𝑆convex𝑎

)
, area

(⋃
𝑏≠𝑎 𝑆

convex
𝑏

) )
where 𝑆convex𝑎 is a set of points in a convex hull of Class 𝑎, ∩
produces the intersected region of two convex hulls, and ∪ gener-
ates the combined region of two convex hulls (i.e.,

⋃
𝑏≠𝑎 𝑆

convex
𝑏

is the combined region of the convex hulls from all other
classes). We define 𝐼𝑛𝑛𝑒𝑟𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜 as the maximum of
𝐼𝑛𝑛𝑒𝑟𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜𝑎 of all classes. 𝐼𝑛𝑛𝑒𝑟𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜 iden-
tifies whether at least one class is surrounded by others.

Class Separation describes the spatial overlap and distance be-
tween a pair of classes (i.e., 2 classes), resulting in either full over-
lap, partial overlap, adjacency, separate, or distant. Sedlmair et
al. [78] note that this feature will be strongly influenced by all of
the other features described above. Quantitatively examining
this spatial relationship is the objective of VCS measures.
Existing VCS measures include 𝐷𝑆𝐶 (a class centroid-based mea-
sure), 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 (a nearest neighbor-based measure),
and their variants (see Sec. 2.2). In addition to these measures,
we introduce two simple shape-based measures, 𝑂𝑣𝑒𝑟𝑙𝑎𝑝convex

and 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝛼-hull. We define these measures as:

𝑂𝑣𝑒𝑟𝑙𝑎𝑝convex =
∑︁

𝑎∈{1,· · · ,𝑁 classes }

∑︁
𝑏>𝑎

area
(
𝑆convex𝑎 ∩ 𝑆convex

𝑏

)
𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝛼-hull =

∑︁
𝑎∈{1,· · · ,𝑁 classes }

∑︁
𝑏>𝑎

area
(
𝑆𝛼-hull𝑎 ∩ 𝑆𝛼-hull

𝑏

)
These measures quantify the total overlapped area of the convex
hulls and 𝛼-hulls for all pairs of classes, respectively, focusing on
how much spatial overlap classes share. This aspect differs from

2Corresponding to using bin="auto" for histogram_bin_edges: https://numpy.org/doc/
stable/reference/generated/numpy.histogram_bin_edges.html
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B. Linearity Features
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C. Neighborhood Features
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E. Network-based features
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D. Class Imbalance Features
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Figure 3: Visual summaries of five categories of classification
complexity measures discussed in Sec. 3.2. All classification
complexitymeasures are represented as𝐶Idenfier, and Identifier
corresponds to the common abbreviations used in the litera-
ture [45, 58].

how existing VCS measures rely on distances between points in
different classes.

3.1.6 Implementation. We implemented all the above mea-
sures including scagnostics, existing VCS measures (e.g.,
𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇), and newly designed ones (e.g., 𝐸𝑞𝑢𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑡 )
with Python 3. We used NumPy/SciPy [92] for matrix calculation,
Shapely [37] and Alpha Shape Toolbox [13] for geometric
operations (including 𝛼-hull generation), and scikit-learn [68] for
neighbor graph generation required to implement VCS measures.

3.2 Features Corresponding to Classification
Complexity

We also include multi-class scatterplot features that encompass the
classification complexity measures surveyed by Lorena et al. [58]
to supplement the features in Sec. 3.1 as well as to examine how
machine learning-based features align with human perceptions
through our user study. The survey discusses 22 classification com-
plexity measures grouped into six categories: axis, linearity, neigh-
borhood, dimensionality, and class imbalance measures. We provide
a summary description for these categories and their measures,
except for dimensionality. We exclude this category because our
multi-class scatterplots have only two dimensions (i.e., 𝑥- and 𝑦-
coodinates), and the complexity of dimensionality is almost always
constant (i.e., 2 dimensions) and negligible. In contrast to Sedlmair
et al.’s taxonomy, Lorena et al. provide an implementation library [5]
that we used directly to implement the complexity measures. See
Fig. 3 for visual summaries of the five categories.

https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html
https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html
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• Axis measures characterize how easily classes can be separated
based on the multi-class scatterplot’s axes/directions. Directions
can be 𝑥-direction, 𝑦-direction, or a direction at an arbitrary an-
gle. For example, if points in different classes have few overlaps
along the 𝑥-direction, they are likely easily separated across
the 𝑥-axis. Note that Lorena et al. originally named this cate-
gory as “feature” measures, but we use the term “axis” to avoid
confusion with other features that we discuss in the paper.
• Linearity measures quantify how easily points in different
classes can be separated by a line. If the linearity is high, multi-
class scatterplots can be easily classified with a simple boundary.
• Neighborhood measures characterize classification difficulty
based on how different classes mix within each point’s local
neighborhoods near the class boundaries. In contrast to linear-
ity measures, neighborhood measures can help us understand
whether each class in a multi-class scatterplot can be separated
using a nonlinear boundary.
• Network measures extract structural information from points in
each class by constructing a graphwhere points act as nodes and
edges exist only between points closer than an algorithmically
determined distance threshold. This information can describe a
scatterplot’s density or whether distinct clusters exist.
• Class imbalance measures compute the imbalance in the number
of points per class.

For more comprehensive details, we refer readers to Lorena et al.’s
survey. We note that some classification complexities have signif-
icant overlaps with measures described in Sec. 3.1. For example,
the class imbalance measures are heavily related to Variance of
Count. Despite their similarity, the classification complexity mea-
sures can help augment the measures discussed in Sec. 3.1. For
instance, linearity and neighborhood measures can quantify the
shape of boundaries of each class’s points, which is not captured
by Variance of Shape.

4 Methodology
We performed a crowdsourced study measuring how scatterplot
features influence people’s judgment on VCS tasks. This study
allows us to characterize the effects of different scatterplot features.
We hypothesized that:
H1: Multiple scatterplot features will influence human per-
ceptions for VCS tasks. We reason H1 given how scatterplot
features are designed to quantify and capture data characteristics;
thereby these features should also be reflected in people’s percep-
tions.
H2: Scatterplot features related to class separation and
between-class features will have higher associations with
human VCS perceptions than other features. Given that our
primary task relates to class separation, features that are designed
to measure class separation, such as VCS measures and classifica-
tion complexity measures, should more strongly align with people’s
perception than other features (e.g. 𝑁 points). Also, between-class
features should outperform within-class features as between-class
features emphasize the differences in their values.

Data Collection

Stage 1 Stage 2

6,947 scatterplots
833

high-dimentional datasets
and 828 scatterplots

Stage 4

294 scatterplots 600 task pairs

vs

Stage 3

Figure 4: The four stages of our stimuli generation (Sec. 4.2).
Stages 1–3 focus on scatterplot selection from real-world
datasets. Stage 4 focuses on choosing task pairs for the user
study.

4.1 Task
VCS tasks using scatterplots have been studied extensively [9, 76–79,
94]. Our study employed a two-alternative forced choice design task.
Participants were presented with a pair of two-class scatterplots
side-by-side, and they were asked to select which scatterplot is more
visually separated for the two classes. This task aims to understand
how features and their values influence human perception of VCS.

4.2 Stimulus Generation
We rendered scatterplots using D3 on a 400 × 400 pixel white
background with two orthogonal black axes with 10 unlabeled ticks
(Fig. 1). Each scatterplot contained two classes, color-coded with
blue and orange in the D3 Category10 color palette. Each point was
visualized with a 2-pixel radius. In internal piloting, we found that
this radius made points in different classes distinguishable while
minimizing overdraw in our tested datasets. The z-order for points
was randomly sampled to avoid potential bias from overdraw.

Inspired by Pandey et al.’s method to generate a set of simi-
lar scatterplots [67], we employed a four-stage process (Fig. 4) to
systematically choose pairs of datasets to render as horizontally
juxtaposed scatterplot pairs.

4.2.1 Stage 1: Data Collection from Online Data Repositories. In the
first stage, we collected datasets from multiple online dataset repos-
itories. Adhering to our general motivation, we aimed to include a
variety of datasets such that our scatterplots would holistically en-
compass different feature values, which will be generated at Stage
4 of our stimuli generation process. The dataset repositories we
included are:
Data Source 1: Sedlmair and Aupetit’s two-class scatterplots.
This repository3 provides 828 2D two-class scatterplots. These
2D scatterplots are generated by applying four different
dimensionality reduction methods to 75 datasets (31 real, 44
synthetic). The four dimensionality reduction methods used in

3https://sepme.vda.univie.ac.at/
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this repository are principal components analysis (PCA) [47, 52],
robust PCA [85], multidimensional scaling (MDS) [86], and
t-SNE [90]. We note that existing VCS measure evaluations
largely relied on this repository [9, 76–78, 94]. We collected all
828 scatterplots.

Data Source 2: UCI Machine Learning Repository The UCI
Machine Learning Repository4 contains popular datasets for
performing machine learning tasks, such as classification and
clustering. This repository accounts for 13 of 31 real-world
datasets that Sedlmair and Aupedit [9] used for their 2D
two-class scatterplot generation. Given our need for predefined
classes, we collected all datasets suitable for a classification
task by using the ucimlrepo package.5 The ucimlrepo package
provides parameter controls for dataset queries. For instance, we
limited the number of data points within a dataset (< 10, 000)
to avoid excessive computation costs for the subsequent stages
of our stimuli generation process. In the end, we collected 194
high-dimensional datasets from this repository.

Data Source 3: VisuMap Datasets. This repository6 contains 25
real-world datasets from various domain applications (e.g., fi-
nancial industry and bioinformatics). 7 of 31 real-world datasets
used in Sedlmair and Aupedit’s two-class scatterplot generation
are also from this repository. We collected all 21 datasets that
have predefined labels.

Data Source 4: Jeon et al.’s clustering validation datasets.
This repository7 provides 96 labeled datasets curated from
multiple different data repository sources: Kaggle,8 the UCI
Machine Learning Repository, and research papers. We collected
all 96 of them.

Data Source 5: OpenML Datasets. This repository9 provides
over 5,000 datasets curated from various online sources (e.g.,
Kaggle, Rdatasets,10 DataBrewer,11 public GitHub repositories).
Similar to Data Source 2, we only collected labeled datasets with
less than 10,000 data points and datasets with no missing values.
This query resulted in 522 datasets.

In summary, we collected 833 high-dimensional datasets and 828
scatterplot datasets. We provide details of these in the supplemen-
tary materials. These 833 high-dimensional datasets are further
processed in the next stage to generate two-class scatterplots.

4.2.2 Stage 2: Scatterplot Generation Using Dimensionality Reduc-
tion Methods. Similar to how scatterplots were generated in Data
Source 1, we applied 10 different dimensionality reduction (DR)
methods to each high-dimensional dataset. However, in contrast
to Data Source 1, we used a wider variety of datasets (over 800
real-world datasets vs. 31 real-world datasets) and also selected
DR methods that (1) correspond to methods already used for Data
Source 1, (2) cover state-of-the-art methods, and (3) consider the
analytical context when using multi-class scatterplots (i.e., analysts
want to compare predefined groups).

4https://archive.ics.uci.edu/
5https://github.com/uci-ml-repo/ucimlrepo
6https://visumap.com/index.html?VisuMapDatasets
7https://hyeonword.com/clm-datasets/
8https://www.kaggle.com/
9https://docs.openml.org/contributing/Datasets/
10https://vincentarelbundock.github.io/Rdatasets/datasets.html
11https://github.com/rmax/databrewer

Figure 5: Examples of dimensionality reduction results.
These results are generated by applying PCA, MDS, t-SNE,
UMAP, and PHATE to the texture dataset [19] available in
the OpenML repository. We can see the differences in visual
configurations among the t-SNE, UMAP and PHATE results.
While t-SNE tends to generate more rounded shapes, PHATE
shows more narrow, curvy shapes. The UMAP result has nar-
rower shapes than the t-SNE’s with a wide white space.

First, we selected DR methods already employed by Data Source
1: PCA, MDS, and t-SNE. Given how ordinary PCA consumes a
large memory space for high-dimensional data, we applied a more
scalable variant, specifically, incremental PCA [74]. Second, we
included more recently developed methods such as UMAP [62]
and PHATE [64]. These DR methods are widely used in bioinfor-
matics as they preserve local, continuous relationships between
data points in high-dimensional space. This preservation is critical
for perception-dependent analysis tasks (e.g., single-cell trajectory
inference) [20, 21]. Despite using the same 833 high-dimensional
datasets, UMAP and PHATE generate significantly different vi-
sual configurations of scatterplot points compared to PCA, MDS,
and t-SNE (see Fig. 5). The inclusion of UMAP and PHATE in our
study can add visual configurations that are unique to these meth-
ods. Third, we incorporated DR methods designed for comparative
analysis of predefined data groups, specifically, linear discriminant
analysis (LDA) [50], contrastive PCA [2], ccPCA [34], and unified
linear comparative analysis (ULCA) [36]. Comparative analysis
using these methods usually involves VCS tasks (e.g., how well
separated is each group? How much do the groups overlap?) [36].
Thus, this third inclusion can reveal how multi-class scatterplot
features influence VCS tasks. We further included Gaussian ran-
dom projection [3] to generate scatterplots that may have features
the aforementioned methods cannot generate. In total, we used 10
different DR methods.

A multi-classscatterplot was generated for each combination of
dataset and DR method. We first eliminated duplicates of collected
datasets from the different data sources (e.g., Data Sources 1, 2, 4,
and 5 may have the same datasets collected from the UCI machine
learning repository) by identifying datasets that have the same
numbers of data points and dimensions. We performed a Z-score
normalization to each dataset before applying DR. For each method,
we used default parameters employed by scikit-learn [68] or the
original authors’ implementations. However, we note three excep-
tions. First, since LDA can only output (𝑁 classes − 1) dimensions,
we assigned random 𝑦-coordinates for datasets with 𝑁 classes = 2.
Second, given that ULCA accepts various parameters to flexibly
compare data groups (e.g., how much their separation should be
emphasized), we assigned these parameters randomly. Lastly, we
only applied MDS, cPCA, ccPCA, and ULCA to datasets with less
than 1,000 data points due to their relatively high time or space com-
plexity. After this DR process, we binarized data labels by following
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a similar procedure as Sedlmair and Aupetit [76]. We assigned Class
0 as one class label by a random sampling that prioritizes selecting
a class with more data points. We then assigned Class 1 to all of the
other class labels. At the end of Stage 2, we obtained 6,947 two-class
scatterplots (6,119 derived from the high-dimensional datasets and
828 scatterplots from Data Source 1).

4.2.3 Stage 3: Feature and Clustering-based Scatterplot Selection.
In the third stage, we selected a subset of 6,947 scatterplots to
maintain a reasonable number of stimuli for the user study. For
each two-class scatterplot, we computed all instantiated features
and class complexity measures described in Sec. 3. In total, each two-
class scatterplot is represented with 70 features. The breakdown
includes 32 within-class features, 20 between-class features, and 18
classification complexity measures.

We computed all 16 within-class features for both Class 0
and Class 1 and extracted the minimum and maximum of each
feature as multi-class scatterplot features (e.g., the minimum of
𝑁 points (denoted by 𝑁 points

min ) and the maximum of 𝑁 points (𝑁 points
max )).

This process produced 32 features. We computed all 20 between-
class features using our implementation method in Fig. 2. Of
these, four existing VCS measures are part of the 20 features:
𝐷𝑆𝐶 [79], 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 [9], 𝑑𝑒𝑛𝑠𝑖𝑡𝑦-𝑎𝑤𝑎𝑟𝑒𝐷𝑆𝐶 [94], and
𝑑𝑒𝑛𝑠𝑖𝑡𝑦-𝑎𝑤𝑎𝑟𝑒𝐾𝑁𝑁𝐺 [94]. These VCS measures are instantiations
of class centroid-based and nearest neighbor-based approaches,
which can help inform Class Separation from multiple aspects
(refer to Sec. 2.2). Note that 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 inherently out-
puts a different score based on which class is selected as the target
class (Class 0 or Class 1) [9]. Hence, we obtained two features corre-
sponding to either case when selecting Class 0 or Class 1 as a target.
Lastly, we computed 18 classification complexity measures span-
ning the five categories (i.e., axis, linearity, neighborhood, network,
and class imbalance measures).

We then sampled representative scatterplots with clustering
methods. Our aim for this sampling is to select a small set of scat-
terplots with a wide variety of feature values. Using spectral clus-
tering [66], we first generated 100 microclusters from the 6,947
scatterplots. Then, we selected 3 samples from each microcluster by
applying 𝑘-means clustering with 𝑘 = 3 and selecting those most
closely placed to each 𝑘-means cluster center. This process gener-
ated 300 sampled scatterplots. However, we manually removed 6
scatterplots because of heavy overdraw within the scatterplot (e.g.,
all points are located only at a few different coordinates). From this
filtering process, we selected 294 scatterplots.

Given how there are many features (70 features) relative to the
number of scatterplots, we considered two aspects when apply-
ing spectral clustering: reducing the number of features and con-
sidering the influence of the curse of dimensionality for distance
computations. First, to reduce the number of features, we applied
correlation-based feature selection. We first removed redundant fea-
tures by choosing only one feature from similar features that have
over 0.8 Pearson’s or Spearman’s absolute correlation coefficient
with each other, reducing 70 features to 40. We then applied PCA to
the remaining features and selected the minimum number of prin-
cipal components (PCs) that preserved 95% of the original data’s
variance, resulting in 26 PCs (i.e., compressed features). Second, as
the affinity matrix for spectral clustering, we used an adjacency

matrix corresponding to a 𝑘-nearest neighbor graph of scatterplots.
Using a 𝑘-nearest neighbor graph can mitigate the issues caused by
varying local densities and the unreliability of Euclidean distances
in high-dimensional space [59]. This consideration related to the
distance relationships in high-dimensional space also led us to the
approach of generating many microclusters first and then selecting
a small number of representatives from each microcluster.

4.2.4 Stage 4: Generation of Multi-class Scatterplot Stimuli Pairs
Based on Feature Groups. From Stage 3, we extracted 294 represen-
tative scatterplots. However, these scatterplots cover a wide range
of values for each feature, and applying an exhaustive compari-
son over 70 features is challenging and infeasible. Therefore, we
grouped the features that have strong correlations to narrow down
our scope. Note that the correlation coefficients used for the previ-
ous stage were for feature selection to perform clustering, while
this stage uses the correlation coefficients for grouping of features.
In Stage 4, within 294 representative scatterplots, we first calculated
Pearson’s correlation coefficients for each pair of 70 features. We
then selected pairs of features that have an absolute correlation
coefficient over 0.5. We further merged the pairs if they share at
least one feature (e.g. we merged a pair of Features A, B and a pair
of Features B, C into one group as these pairs share Feature B). This
grouping process produced 20 feature groups. Each feature group
has a different number of multi-class scatterplot features, ranging
from 1 to 24. We list all the 20 feature groups in Table 1.

To further analyze how feature values can impact performance,
we used the 20 feature groups as the baseline when selecting a
task pair. We aimed to systemically select task pairs that have fea-
ture value differences as control variables. We selected task pairs
in three steps through an iterative process. In the first step, we
selected task pairs such that each pair has significantly different
values for scatterplot features categorized in that feature groups
(e.g., for Feature Group 1 in Table 1, a pair has both large and small
𝑂𝑣𝑒𝑟𝑙𝑎𝑝convex, while also having large differences in all values of
𝐴𝑟𝑒𝑎𝛼-hullmax ,𝐴𝑟𝑒𝑎𝛼-hullmin ,𝐶F2, and𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝛼-hull). Second, for each fea-
ture group, we further identified task pairs that have similar values
for features that are not in the current feature group (e.g., when con-
sidering Feature Group 1, a pair should have similar 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝛼-hull
and 𝐶𝑙𝑢𝑚𝑝𝑦 , etc.). Lastly, we prioritized selecting task pairs that
were not frequently chosen to avoid an unbalanced selection of
some scatterplots. We repeated this process to select 30 task pairs
for each of the 20 feature groups, resulting in 600 task pairs of
scatterplots in total. The number of selections for each scatterplot
ranged from 2 to 7 (𝑚𝑒𝑎𝑛 = 4.08, 𝜎 = 0.9). We randomly divided
the 600 task pairs into 10 batches (i.e., each batch contains 60 tasks).
For a given task pair, two scatterplots were placed side-by-side in a
random order.

4.3 Procedure
Our experiment had three phases: (i) informed consent and color-
blindness screening, (ii) task description and tutorial, and (iii) the
formal study.

In the first phase, participants provided their informed consent
after reading our consent form following our IRB protocol and
provided their demographic data. They were also asked to complete
an Ishihara color-blind screening [42]. After successfully passing
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Table 1: The 20 feature groups of the 70 multi-class scatterplot features. Each group contains a set of features that have high
Pearson’s correlation coefficients (𝑟 > 0.5) based on our dataset. These feature groups are used to generate task pairs for the
user study. See Sec. 4.2 on how these feature groups were generated.

Group List of features

Group 1 (1)𝐴𝑟𝑒𝑎𝛼 -hull
max (2)𝐴𝑟𝑒𝑎𝛼 -hull

min (3)𝑂𝑣𝑒𝑟𝑙𝑎𝑝convex (4)𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝛼 -hull (5)𝐶F2

Group 2 (1)𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐷𝑖 𝑓𝑓 convexmax (2)𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐷𝑖 𝑓𝑓 convexmin

Group 3 (1) 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝛼 -hull
max (2) 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝛼 -hull

min (3) 𝜎𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝛼 -hull

Group 4 (1)𝐶𝑙𝑢𝑚𝑝𝑦max (2)𝐶𝑙𝑢𝑚𝑝𝑦min (3)𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐷𝑖 𝑓 𝑓 𝛼 -hull
min (4)𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐷𝑖 𝑓 𝑓 𝛼 -hull

min
(5) 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝max (6) 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝min (7) 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒max (8) 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒min

Group 5 (1) 𝜎𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐

Group 6 (1) 𝑁 points
max (2) 𝑁 points

min (3) 𝜎𝑁
points

(4) 𝑃𝑜𝑖𝑛𝑡𝑠/𝐶𝑙𝑎𝑠𝑠𝑒𝑠 (5) 𝑆𝑝𝑎𝑟𝑠𝑒min

Group 7 (1)𝐴𝑟𝑒𝑎𝛼 -hull
max (2)𝐴𝑟𝑒𝑎𝛼 -hull

min (3) 𝜎𝐴𝑟𝑒𝑎𝛼 -hull
(4) 𝑆𝑘𝑒𝑤𝑒𝑑min (5)𝑂𝑢𝑡𝑙𝑦𝑖𝑛𝑔max (6)𝑂𝑢𝑡𝑙𝑦𝑖𝑛𝑔min (7)𝐶𝑜𝑛𝑣𝑒𝑥max (8)𝐶𝑜𝑛𝑣𝑒𝑥min (9)𝑂𝑣𝑒𝑟𝑙𝑎𝑝convex (10)𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝛼 -hull

Group 8 (1)𝑂𝑣𝑒𝑟𝑙𝑎𝑝convex (2)𝐶F2 (3)𝐶F3 (4)𝐶F4 (5)𝐶LSC (6)𝐶Density

Group 9 (1) 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠max (2) 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠min

Group 10 (1) 𝑁 points
max (2) 𝜎𝑁

points
(3) 𝑃𝑜𝑖𝑛𝑡𝑠/𝐶𝑙𝑎𝑠𝑠𝑒𝑠 (4)𝐶Hubs (5)𝐶C1 (6)𝐶C2

Group 11 (1)𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐max (2)𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐min

Group 12 (1) 𝑃𝑜𝑖𝑛𝑡𝑠/𝐶𝑙𝑎𝑠𝑠𝑒𝑠 (2) 𝑆𝑝𝑎𝑟𝑠𝑒max (3) 𝑆𝑝𝑎𝑟𝑠𝑒min (4) 𝑆𝑘𝑖𝑛𝑛𝑦max (5) 𝑆𝑘𝑖𝑛𝑛𝑦min

Group 13 (1) 𝑆𝑝𝑙𝑖𝑡 (2) 𝐼𝑛𝑛𝑒𝑟𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜 (3) 𝐷𝑆𝐶 (4)𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇𝑡0 (5)𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇𝑡1 (6) 𝑑𝑒𝑛𝑠𝑖𝑡𝑦−𝑎𝑤𝑎𝑟𝑒𝐷𝑆𝐶 (7) 𝑑𝑒𝑛𝑠𝑖𝑡𝑦−𝑎𝑤𝑎𝑟𝑒𝐾𝑁𝑁𝐺
(8)𝐶F2 (9)𝐶F3 (10)𝐶F4 (11)𝐶L1 (12)𝐶L2 (13)𝐶L3 (14)𝐶N1 (15)𝐶N2 (16)𝐶N3 (17)𝐶N4 (18)𝐶T1 (19)𝐶LSC (20)𝐶Density (21)𝐶F1v (22)𝐶Hubs (23)𝐶C1 (24)𝐶C2

Group 14 (1) 𝑆𝑝𝑎𝑟𝑠𝑒max (2) 𝑆𝑝𝑎𝑟𝑠𝑒min (3)𝐶𝑜𝑛𝑣𝑒𝑥max (4)𝐶𝑜𝑛𝑣𝑒𝑥min (5) 𝜎𝐶𝑜𝑛𝑣𝑒𝑥 (6) 𝑆𝑘𝑖𝑛𝑛𝑦max (7) 𝑆𝑘𝑖𝑛𝑛𝑦min

Group 15 (1) 𝐸𝑞𝑢𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑡

Group 16 (1) 𝑁 points
max (2) 𝜎𝑁

points
(3)𝐶L2 (4)𝐶L3 (5)𝐶N4 (6)𝐶Density (7)𝐶Hubs (8)𝐶C1 (9)𝐶C2

Group 17 (1) 𝑆𝑡𝑟𝑖𝑛𝑔𝑦max (2) 𝑆𝑡𝑟𝑖𝑛𝑔𝑦min (3) 𝜎𝑆𝑡𝑟𝑖𝑛𝑔𝑦

Group 18 (1)𝐴𝑟𝑒𝑎𝛼 -hull
max (2)𝐴𝑟𝑒𝑎𝛼 -hull

min (3) 𝑆𝑘𝑒𝑤𝑒𝑑max (4) 𝑆𝑘𝑒𝑤𝑒𝑑min (5)𝑂𝑢𝑡𝑙𝑦𝑖𝑛𝑔max (6)𝑂𝑢𝑡𝑙𝑦𝑖𝑛𝑔min (7)𝐶𝑜𝑛𝑣𝑒𝑥max (8)𝐶𝑜𝑛𝑣𝑒𝑥min (9)𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝛼 -hull (10)𝑂𝑣𝑒𝑟𝑙𝑎𝑝convex

Group 19 (1) 𝜎𝐶𝑜𝑛𝑣𝑒𝑥 (2) 𝑆𝑘𝑖𝑛𝑛𝑦min (3) 𝜎𝑆𝑘𝑖𝑛𝑛𝑦

Group 20 (1)𝐴𝑟𝑒𝑎𝛼 -hull
max (2)𝐴𝑟𝑒𝑎𝛼 -hull

min (3) 𝑆𝑝𝑎𝑟𝑠𝑒max (4)𝑂𝑢𝑡𝑙𝑦𝑖𝑛𝑔max (5)𝐶𝑜𝑛𝑣𝑒𝑥max (6)𝐶𝑜𝑛𝑣𝑒𝑥min (7) 𝑆𝑘𝑖𝑛𝑛𝑦max (8) 𝑆𝑘𝑖𝑛𝑛𝑦min (9)𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝛼 -hull (10)𝐶ClsCoef

the color-blind screening, participants were led to a tutorial page
that described our target experimental task.

In the second phase, we provided a series of icons to illustrate
different degrees of VCS for the tutorial. We chose to use icons
instead of scatterplots to prevent biasing the participants’ responses.
Participants were required to successfully answer three easy tutorial
tasks by indicating which scatterplot (A or B) has blues and oranges
that are more separated? This tutorial task uses a two-alternative
forced choice (2AFC) and is representative of the experimental task,
serving to remove any possible ambiguity from the task description.
After successfully answering all three tutorial tasks, participants
moved on to the formal study phase.

During the formal study phase, participants assessed VCS for 64
pairs of stimuli (60 formal trials and 4 engagement checks). Each
participant was randomly assigned to one of the 10 batches. The
task pairs in each batch were presented in a randomized order. We
collected 15 participants for each batch. Participants had 20 seconds
to respond to each task pair. If they did not respond within that
time window, their answer was considered to be N/A, and the study

moved on to the next task pair. Participants either clicked on the
provided radio buttons or used the left/right keyboard arrow keys to
input their responses. We employed four engagement checks to en-
sure valid participation. These engagement checks were stimuli that
had a clear class separation with a 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 score [9]
of at least 0.6 difference. We randomly placed these engagement
checks throughout the 60 formal task pairs.

4.4 Participants
We recruited 152 participants fromAmazon’sMechanical Turk. Two
participants failed three out of four engagement checks and were
excluded from the analysis due to insufficient attention or lack of
understanding of the task.We analyzed data from the remaining 150
participants (91male, 59 female; 24–65 years of age). All participants
were from the United States and Canada, had at least a 95% approval
rating, and reported having normal or correct-to-normal vision. The
experiment lasted an average of 15 minutes.
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4.5 Analysis
We used participants’ selection differences over each task pair as
our primary dependent measure. To measure how scatterplot fea-
tures influence people’s selection on VCS tasks, we divided our
experimental data into two parts: all-data (includes 70 features)
and by-group (see Table 1). For each task pair, we computed the
difference in feature values (subtracting feature values of the less
frequently selected scatterplot from those of the more frequently
selected scatterplot) as our independent variables. We analyzed the
resulting data using 𝐹 -tests with standard least squares and linear
regression. All post-hoc analyses used Tukey’s Honest Significant
Difference Test (HSD, 𝛼 = 0.05).

5 Results
We measure how different scatterplot features can influence peo-
ple’s perception of VCS tasks and identify which features are impor-
tant for such tasks. Our analysis focuses on three primary questions:
(Q1) How do existing VCS measures perform with respect to human
judgments? (Q2) Which individual scatterplot features are signifi-
cant to VCS tasks? (Q3) What combination of multiple features are
significant to VCS tasks? We report significant effects of features
relative to our two hypotheses. We provide full data tables in our
supplemental materials. We discuss significant results and statisti-
cal analysis based on the scatterplot features using both traditional
inferential measures and 95% bootstrapped confidence intervals (±
95% CI) for fair statistical communication.

5.1 Analysis 1: Human Perception versus Visual
Class Separation Measures

We analyze participants’ responses to first evaluate their consis-
tency across task pairs. This analysis is necessary given how there
is no ground truth to compare participants’ answers against. Hence,
analyzing participants’ responses can help establish a baseline of
the general patterns of human perception for VCS tasks. We con-
duct three analyses for this objective: understanding alignment
among participants, computing alignment between participants’ re-
sponses and VCS measures, and understanding how the magnitude
of computed VCS measures informs perceived separation.

5.1.1 How well aligned are people with each other? First, we com-
puted the difference in participants’ selection within a task pair
(i.e., selection difference). A task pair requires a binary selection
(i.e., a two-alternative forced choice between scatterplot 𝐴 or 𝐵).
Selections across all 600 task pairs would highlight a preference
majority for certain features. A higher selection difference value
would indicate a majority alignment among participants’ perceived
class separation. We computed this selection difference by taking
the absolute value of the difference of the number of times partici-
pants selected 𝐴 versus 𝐵. The result is shown in Fig. 6. Across all
600 task pairs, the average selection difference for each task pair
is 9.716 (𝜎 = 4.591) from the possible maximum of 15. This result
implies that while there is a general agreement on how VCS in the
scatterplots was perceived, there is not a universal consensus.

5.1.2 How well do people’s perceptions align with
𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇? To further investigate this divergence, we
used 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 as a proxy ground truth to compare
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Figure 6: Selection difference for 600 task pairs. Each task
pair has 15 responses. For example, the selection difference
of 11 represents 13 people selecting one class and 2 selecting
another. 80 task pairs had this 13:2 ratio in their responses.
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Figure 7: Comparison of the number of selections on a scat-
terplot having a larger𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 score (𝑥-axis) and
the𝐺𝑂𝑁𝐺 0.35𝐷𝐼𝑅 𝐶𝑃𝑇 score difference (𝑦-axis) for task pairs.
The red line depicts the line of best fit, showing a weak cor-
relation (𝑟 = 0.36).

alignment against. As discussed in Sec. 2.2, Aupetit & Seldmiar [9]
noted that 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 is the best-performing VCS
measure for their tested set of 828 scatterplots. Participants’
averaged 67.6% accuracy (𝜎 = 31.2; 95% 𝐶𝐼 = [65.1, 70.1]) when
using 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 as a proxy ground truth. This result
highlights a 32.4% mismatch between 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 mea-
sures and human perception, indicating that 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇
likely fails to account for a subset set of multi-class scatterplot
features that are important for human VCS.

5.1.3 Do large𝐺𝑂𝑁𝐺 0.35𝐷𝐼𝑅𝐶𝑃𝑇 differences lead to higher agree-
ment with human judgments? To understand mismatches between
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human perception and 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇, we performed a sec-
ondary analysis to determine whether scatterplot pairs with larger
differences in 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 scores (i.e., stronger predicted
separation) would lead to greater agreement amongst participants.
We posit that a larger difference in 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 for a task
pair should result in clearer separation and, therefore, more con-
sistent human responses. For example, consider two hypothetical
task pairs where each scatterplot has a𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 score:
the first task pair has 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 scores of [0.8, 0.2] and
the other has [0.4, 0.2]. In this case, the first task pair should lead
to higher agreement.

We compared responses with 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 scores by
calculating the difference in 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 scores for each
task pair and then computing the Pearson correlation coefficient
between the score differences and the number of participants se-
lecting the scatterplot with the larger 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 score
(Fig. 7). 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 scores were weakly correlated with
participant response frequencies (𝑟 = 0.36). This result also indi-
cates that 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 may insufficiently capture human
perception for VCS tasks.

5.1.4 Summary of Analysis 1: People’s assessment of visual class
separation is largely in alignment but fails to be in universal
agreement for some conditions. Existing VCS measures such as
𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 are not well-aligned with people’s percep-
tions of relative class separation.

5.2 Analysis 2: Identifying Individual Features
Significant to Visual Class Separation

Building upon Analysis 1, we investigate which individual fea-
tures impact human judgments on VCS tasks that existing VCS
measures insufficiently account for by using two tests (𝐹 -test and
𝐹 -regression) applied across all the experimental data. Please check
our supplementary materials for details of these two test results.

5.2.1 Which individual features influence human performance for
VCS tasks? First, we performed an 𝐹 -test for all 70 features across
the 600 task pairs. Only three features (𝐶F1v,𝐶N1, and𝐶C1) have sig-
nificant effects on selection difference (𝑝 < 0.05, refer to Fig. 8). All
three features are classification complexity measures (Sec. 3.2).𝐶F1v

is an axis-based feature that evaluates classification difficulty based
on the distance of class centroids relative to the positional distribu-
tion of points within each class (specifically, the maximum Fisher’s
discriminant ratio [58]). It generally describes Class Separation
as the degree of overlap between the two classes. See Fig. 9 as an
example, which presents two task pairs with small and large values
of 𝐶F1v. 𝐶N1 is a neighborhood feature that computes the fraction
of points near the class boundary. People viewed scatterplots with
smaller 𝐶F1v and 𝐶N1 values as more separated (Fig. 8). 𝐶C1 is a
class imbalance feature that computes the entropy of class propor-
tions. While the 𝐹 -tests indicates the significant effects𝐶C1, it does
not show clear effects as 𝐶F1v and 𝐶N1, as shown in Fig. 8.

Both 𝐶F1v and 𝐶N1 consider the overlap between two classes
and the degree of complexity (e.g., computational or geometric)
required to separate them. Lorena et al. [58] note that lower values
in these measures indicate that the data represents simpler classi-
fication problems, which can be easily separated using statistical
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Figure 8: The average feature differences for selection differ-
ences per task pair. Three features: 𝐶F1v, 𝐶N1, and 𝐶C1 best
capture human perception for VCS tasks based on our 𝐹 -test
analysis. The figures show that people tend to consider a scat-
terplot to be more visually separated with smaller 𝐶F1v and
𝐶N1 features. Error bars represent 95% confidence intervals.

Figure 9: Two task pair examples that have large value differ-
ences for 𝐶F1v. All 15 participants selected the scatterplots
that have smaller 𝐶F1v values for these two examples.

approaches (Fig. 3-a, c). Though these classification complexity
measures were originally intended for machine learning models,
these results highlight how these measures also reasonably match
human perception.

To evaluate the significance of individual features, we also per-
formed 𝐹 -regression for all 70 features across the 600 task pairs.
As listed in Table 2, 37 features have at least a 𝑝 < 0.05, indicating
slightly over half of the multi-class scatterplot features (37/70) may
influence VCS tasks. Out of these 37 features, 27 are the instantiated
features from Sedlmair et al. [78], confirming how the conceptual
features proposed by their taxonomy influence VCS tasks. These
results confirm H1: scatterplot features impact people’s percep-
tion of VCS tasks, and that multiple features correlate with class
separability.
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Table 2: 37 features with significant effects on human percep-
tion for VCS tasks (Sec. 5.2.1). These features are identified
with 𝐹 -regression (𝑝 < 0.05). The Pearson’s correlation coeffi-
cients larger than 0.3 or smaller than -0.3 (i.e., |𝑟 | > 0.3) are
bolded.

Feature name Feature category r

𝐶F1v Axis -0.504
𝐷𝑆𝐶 Class Separation 0.465
𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇𝑡1 Class Separation 0.439
𝑑𝑒𝑛𝑠𝑖𝑡𝑦−𝑎𝑤𝑎𝑟𝑒𝐷𝑆𝐶 Class Separation 0.408
𝐶F4 Axis -0.399
𝐶F3 Axis -0.366
𝐶N1 Neighborhood -0.328
𝐶N3 Neighborhood -0.324
𝑑𝑒𝑛𝑠𝑖𝑡𝑦−𝑎𝑤𝑎𝑟𝑒𝐾𝑁𝑁𝐺 Class Separation 0.323
𝐶T1 Neighborhood -0.312
𝐶LSC Neighborhood -0.302
𝐶L1 Neighborhood -0.297
𝐶L3 Neighborhood -0.294
𝑆𝑝𝑙𝑖𝑡 Split 0.271
𝐼𝑛𝑛𝑒𝑟𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜 Inner-Outer Position -0.269
𝐶L2 Neighborhood -0.268
𝐶Density Network -0.246
𝑃𝑜𝑖𝑛𝑡𝑠/𝐶𝑙𝑎𝑠𝑠𝑒𝑠 Class/Point Count -0.229
𝑁

points
max Count -0.227

𝑆𝑘𝑖𝑛𝑛𝑦min Shape -0.214
𝐶N4 Neighborhood -0.204
𝜎𝑁 points

Variance of Count -0.191
𝜎𝐶𝑜𝑛𝑣𝑒𝑥 Variance of Shape -0.184
𝑆𝑝𝑎𝑟𝑠𝑒min Density 0.179
𝑆𝑝𝑎𝑟𝑠𝑒max Density 0.174
𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠min Centroid -0.173
𝑆𝑘𝑖𝑛𝑛𝑦max Shape -0.164
𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇𝑡0 Class Separation 0.164
𝜎𝑆𝑘𝑖𝑛𝑛𝑦 Variance of Shape 0.153
𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐷𝑖 𝑓 𝑓 convex Centroid -0.141
𝐶𝑜𝑛𝑣𝑒𝑥max Shape 0.137
𝐶𝑙𝑢𝑚𝑝𝑦max Clumpiness 0.129
𝑁

points
min Count -0.123

𝑂𝑢𝑡𝑙𝑦𝑖𝑛𝑔min Outlier -0.116
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒max Centroid 0.111
𝑂𝑣𝑒𝑟𝑙𝑎𝑝convex Centroid -0.110
𝜎𝐴𝑟𝑒𝑎𝛼 -hull

Variance of Size 0.105

We assess how well these features individually correlate with
VCS using Pearson’s correlation. 11 of the 37 features have a Pearson
correlation coefficient of 𝑟 > 0.3 (at least moderate correlation) and
𝑝 < 0.05. 7 of these 11 features are axis and neighborhood measures
and are derived from the classification complexity measures from
Lorena et al. [58]. The remaining 4 are VCS measures. This result
further supports H2, illustrating how classification complexity and
VCS measures can quantify perceived separability.

5.2.2 Considering feature group data, which individual features
influence human perception for VCS tasks? The 20 feature groups in
Table 1 each represent a set of features that are highly correlated
to each other (Sec. 4.2.4), but we lack insight as to whether these
features are correlated to participants’ scatterplot selection. The 𝐹 -
test and 𝐹 -regression in Sec. 5.2.1 help determine which features

Table 3: Selected 𝐹 -regression test results computed for each
feature group (Sec. 5.2.2). The seven feature groups that have
at least one feature has 𝑝-value < 0.05 from our 𝐹 -regression
computation. The table shows the corresponding Pearson’s
correlation coefficients for features considered significant to
the VCS tasks (i.e., 𝑝 < 0.05).

Feature group Feature name Feature category r

Group 4 𝐶𝑙𝑢𝑚𝑝𝑦max Clumpiness 0.446
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝max Centroid -0.412
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝min Centroid -0.406
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒max Centroid 0.399
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒min Centroid 0.395

Group 8 𝐶LSC Neighborhood -0.503
𝐶F3 Axis -0.481
𝐶F4 Axis -0.465
𝐶Density Network -0.442
𝑂𝑣𝑒𝑟𝑙𝑎𝑝convex Class Separation -0.425

Group 10 𝑁
points
max Count -0.430

𝑃𝑜𝑖𝑛𝑡𝑠/𝐶𝑙𝑎𝑠𝑠𝑒𝑠 Class/Point Count -0.429
𝜎𝑁 points

Variance of Count -0.429

Group 12 𝑃𝑜𝑖𝑛𝑡𝑠/𝐶𝑙𝑎𝑠𝑠𝑒𝑠 Class/Point Count -0.639
𝑆𝑘𝑖𝑛𝑛𝑦min Shape -0.635
𝑆𝑘𝑖𝑛𝑛𝑦max Shape -0.589
𝑆𝑝𝑎𝑟𝑠𝑒min Density 0.515
𝑆𝑝𝑎𝑟𝑠𝑒max Density 0.440

Group 13 𝐶Density Network 0.517

Group 14 𝜎𝐶𝑜𝑛𝑣𝑒𝑥 Variance of Shape 0.530
𝑆𝑘𝑖𝑛𝑛𝑦min Shape -0.445
𝑆𝑘𝑖𝑛𝑛𝑦max Shape -0.393

Group 20 𝑆𝑘𝑖𝑛𝑛𝑦max Shape -0.519
𝐴𝑟𝑒𝑎𝛼 -hull

min Size 0.504
𝐶𝑜𝑛𝑣𝑒𝑥min Shape 0.484
𝐶𝑜𝑛𝑣𝑒𝑥max Shape 0.445
𝑆𝑘𝑖𝑛𝑛𝑦min Shape -0.434

are most closely related to VCS but can introduce noise given how
all 70 features are treated as independent variables. We performed
an 𝐹 -regression test for each feature group to mitigate the influence
of other feature groups—and inevitably other features—introducing
a more robust measure for identifying the influence of independent
features for VCS, aligning with our study’s task pair design.

7 of the 20 feature groups have at least one feature that sig-
nificantly correlates with perceived Class Separation. Table 3
shows these 7 feature groups and their corresponding 𝑟 val-
ues. For example, in Group 4, 𝐶𝑙𝑢𝑚𝑝𝑦 , 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑂𝑣𝑒𝑟𝑙𝑎𝑝 , and
𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 focus on capturing the non-Gaussianity of
point distributions. We can infer that participants perceived VCS
differently based on whether the distributions are Gaussian or not.
In Group 8, 𝐶LSC, 𝐶F3, and 𝐶F4 show negative correlations: people
think two classes are more separated when general overlap region
is small. Group 10 shows that point Count also matters, indicating
humans perceive VCS differently if there is a class imbalance or a
large number of points in a scatterplot. Groups 12, 13, 14, and 20
show that features related to 𝑆𝑘𝑖𝑛𝑛𝑦 , 𝑆𝑝𝑎𝑟𝑠𝑒 , 𝐶𝑜𝑛𝑣𝑒𝑥 , and 𝐶Density

correspond to Point Distance and Shape. As all VCS measures
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are included in Group 13 (see Table 1), the correlation of Group
13 with VCS tasks also indicates that all VCS measures quantify
human performance on VCS tasks to a certain degree.

5.2.3 Summary of Analysis 2: Classification complexity features
largely impact human perception for VCS tasks. Features related
to Count, Variance of Count, Density, Clumpiness, Shape,
Centroid (or non-Gaussianity), Class Separation also have a
strong correlation to people’s perceived class separation.

5.3 Analysis 3: Identifying Top-Ranking Set of
Features

Features that significantly impact human perception of VCS likely
orchestrate in ensembles rather than as a single feature. This be-
havior is suggested based on the inability of any single feature to
fully reflect human performance in Analysis 2. Analysis 3 focuses
on uncovering the feature combinations that influence VCS. Identi-
fying the set of features that best explain perceived VCS and their
corresponding weights can inform future VCS-related studies by
informing critical feature combinations and offering new consider-
ations for VCS models. To determine feature sets significant to VCS
tasks, we employed a feature selection process and built models
based on our experimental data.

5.3.1 What is the top-ranking set of features? First, we employed
SequentialFeatureSelector from scikit-learn [68] to rank individual
candidate features. This machine learning method performs sequen-
tial feature selection by choosing to add or remove features in a
greedy fashion. Our implementation iteratively added one best-
scoring feature while calculating the 𝑅2 score based on currently
selected features. We stopped adding features to our selection if 𝑅2
did not improve after adding more features. This process resulted
in a set of 23 features, which partially supports H2: 9 of these fea-
tures contain features related to VCS and classification complexity
measures (e.g., 𝐶F1v, 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇𝑡0, 𝑂𝑣𝑒𝑟𝑙𝑎𝑝convex) while
the remaining 14 features are within-class features.

We used these 23 features as the base and incorporated two
𝐹 -regression results from Analysis 2—one for all data (Sec. 5.2.1)
and feature group data (Sec. 5.2.2)—to model our data. Only three
additional features,𝐶LSC,𝐶F3, and𝐶F4, were considered significant
in both 𝐹 -regression results. These three features were added to the
initial list of 23, resulting in a final set of 26 features (see Table 4).

5.3.2 A composite feature model. We obtain weights for each of
the 26 features to model participants’ overall VCS scores by using
Epsilon-Support Vector Regressionwith the linear kernel (linear SVR).
Applying linear SVR, we built a composite feature from the fea-
ture set to explore the integrated effects on human judgments. We
selected linear SVR, instead of conventional linear regression, as
linear SVR is more robust to outliers [11]. To validate the composite
feature, we computed Pearson correlation coefficients on selected
weighted features and compared them to the computed coefficients
from a single-feature analysis. Our results (Table 4) indicate that the
Pearson correlation coefficient for the composite feature (𝑟 = 0.696)
is significantly more correlated with participant responses than any
individual feature (e.g., 𝐶F1v, 𝑟 = −0.504). This result indicates that
people are influenced by multiple features related to VCS tasks and
that combining multiple features can lead to a better VCS measure.

Table 4: The 26 features selected through the iterative feature
selection (Sec. 5.3). Note: uni.—univariate, comp.—composite.

Rank Feature Feature type Weight 𝑟 (uni.) 𝑟 (comp.)

1 𝐶F1v classif. complex. -1.109 -0.504 0.504
2 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇𝑡1 between-class -1.279 0.439 0.554
3 𝑆𝑘𝑖𝑛𝑛𝑦min within-class 0.959 -0.214 0.618
4 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠min within-class 3.489 -0.173 0.639
5 𝐶𝑙𝑢𝑚𝑝𝑦max within-class -1.137 0.129 0.656
6 𝑂𝑣𝑒𝑟𝑙𝑎𝑝convex between-class 0.130 -0.110 0.667
7 𝐼𝑛𝑛𝑒𝑟𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜 between-class 0.993 -0.269 0.675
8 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒min within-class -0.929 0.050 0.678
9 𝑆𝑝𝑎𝑟𝑠𝑒max within-class -1.228 0.174 0.681
10 𝑂𝑢𝑡𝑙𝑦𝑖𝑛𝑔min within-class -1.966 -0.116 0.683
11 𝐴𝑟𝑒𝑎𝛼 -hull

max within-class 0.445 0.063 0.683
12 𝑆𝑝𝑎𝑟𝑠𝑒min within-class -2.022 0.179 0.684
13 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒max within-class 0.814 0.111 0.685
14 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠max within-class -2.024 0.065 0.686
15 𝐷𝑆𝐶 between-class -1.246 0.465 0.688
16 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐷𝑖 𝑓𝑓 𝛼 -hull

min within-class 0.493 0.020 0.689
17 𝐶C1 classif. complex. 2.403 0.057 0.689
18 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐷𝑖 𝑓𝑓 convexmin within-class -3.629 -0.141 0.690
19 𝑆𝑘𝑒𝑤𝑒𝑑min within-class -1.888 -0.056 0.691
20 𝑆𝑘𝑒𝑤𝑒𝑑max within-class -0.314 -0.012 0.691
21 𝑆𝑝𝑙𝑖𝑡 between-class -0.586 0.271 0.692
22 𝐶C2 classif. complex. 0.659 -0.067 0.692
23 𝜎𝑆𝑡𝑟𝑖𝑛𝑔𝑦 between-class 3.597 0.051 0.693
24 𝐶LSC classif. complex. -0.151 -0.503 0.693
25 𝐶F3 classif. complex. 0.999 -0.481 0.693
26 𝐶F4 classif. complex. -0.828 -0.465 0.695

This compositing approach can also improve existing measures. For
example, the correlation coefficient for using𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇
alone is 𝑟 = 0.439. After adding 𝐶F1v improves to 𝑟 = 0.554, and
adding three more features further increases the correlation to
𝑟 = 0.656 (see Table 4).

The signs of the weights may help us understand how features
interact with one another. However, interpreting these signs is
not straightforward due to the correlations for each single feature
(cf. Table 1). For example, both 𝐶F1v and 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇𝑡1
are negative in the final composite feature (Table 4). In contrast,
their signs were negative and positive respectively if our composite
feature only considers these two features. While iteratively adding
features, the sign of 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇𝑡1 flipped from positive
to negative after adding 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠min. Hence, instead of focusing
on each feature’s sign and weight, we rather consider whether the
composite feature collectively utilizes the strength of each single
feature to better align with human perception.

To evaluate our composite feature model, we employed a Monte
Carlo cross-validation [102] with our user study data where we
randomly selected 80% of the data as the training data and 20% data
as the testing data for 100 iterations. For each iteration, we followed
the same approach in Sec. 5.3.1. We used the training set to select
the top 23 features and incorporated three features (𝐶LSC, 𝐶F3, and
𝐶F4) to generate a composite feature. Note that the top 23 features
can vary in each iteration and do not necessarily match the set of
23 features mentioned in Sec. 5.3.1. After obtaining the composite
feature, we used the composite feature to predict perception for
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VCS tasks with the testing set. From these 100 iterations, 𝐶F1v was
ranked first for all trials.𝐺𝑂𝑁𝐺 0.35𝐷𝐼𝑅 𝐶𝑃𝑇𝑡1 was ranked second
for 89 trials and ranked third for 10 trials. 𝑆𝑘𝑖𝑛𝑛𝑦min ranked third
for 85 trials and ranked second for 5 trials. These three features
were consistently to be the most predictive.

The generated models had an accuracy average of 84.2% (𝜎 =

3.04; 95% 𝐶𝐼 = [83.6, 84.8]) over the 100 trials, significantly outper-
forming 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇, which had the accuracy of 67.6%
(Sec. 5.1.2). Table 5 shows example task pairs that a single scatter-
plot feature such as𝐶F1v and𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 can predict VCS
perception in certain conditions but fail in others. In contrast, our
composite feature model provided correct predictions for all tested
task pairs.

5.3.3 Summary of Analysis 3: The third analysis validates that we
can generate an improved measure of VCS task performance by
including multiple features from best-performing feature sets. By
integrating results from Analyses 2 and 3, we can generate a com-
posite feature with our final feature set. The cross-validation results
show a consistent set of top-ranking features with respect to our
composite feature and demonstrate a 16.6% accuracy improvement
when compared to only using 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 (cf. Sec. 5.1.2).
The improvement illustrates how our composite feature approach
can better evaluate human perception of VCS tasks on various data
distributions.

6 Discussion
6.1 Visual Class Separation Measures: Key

Features and Performance Difference to
Human Perception

This paper’s goal is twofold: (1) investigate what are key features
that influence human perception of VCS; (2) Determine whether ex-
isting VCS measures align with human perception. For the first goal,
our analysis reveals that top-ranking features come from diverse
sources. Notably, within-class features dominated over between-
class features. Second, our results show that while there are certain
mismatches between existing VCS measures and human perception,
our composite feature model can reduce such gap by integrating
multiple features.

6.1.1 What are the key scatterplot features? We address our first
research question through three sets of analyses (Sec. 5) which also
enabled us to create a composite feature model with a final set of 26
features that quantifies perceived VCS better than any individual
feature (Table 4). As discussed in Sec. 5.3, predicting human percep-
tion in VCS tasks requires models to consider multiple scatterplot
features. First, the top five features in our study do not come from
a single source—rather they reflect diverse sources. These features
are instances of classification complexity measures (#1) [58], VCS
measures (#2) [9], scagnostics [89] (#3, #5), and non-Gaussianity
(#4). This result largely reflects Sedlmair et al.’s perspective that
VCS cannot be singularly evaluated across different scatterplots.
Even though VCS tasks may appear straightforward (i.e., is Class
A well separated from Class B?), the diversity of these measures
indicates the range of intertwined cognitive processes required to
accomplish this task. Furthermore, we note that the top-ranking
feature is𝐶F1v: an axis-based classification complexity measure. As

mentioned in Sec. 3.2, axis-features characterize how easily classes
can be separated based on an arbitrary direction in a multi-class
scatterplot. Specifically, 𝐶F1v measures the maximum linear bound-
ary margin between classes based on the classes’ centroids. This
approach shares a similarity with the class centroid-based VCS
measures, such as𝐷𝑆𝐶 . However, existing centroid-based VCS mea-
sures focus more on the number of points placed close to each class
centroid (i.e., point-based), whereas 𝐶F1v considers the dispersion
of points (i.e., distribution-based). This difference suggests that
future VCS measures should incorporate information on the data
distributions.

Although the top-ranking feature is𝐶F1v, we note that classifica-
tion complexity features, as a whole, performed well in correlation
tests (Analysis 2) but not in feature selection (Analysis 3). After
computing 𝐹 -regression and Pearson’s correlation coefficient with
all experimental data (Sec. 5.2), 7 out of 11 selected features are
related to classification complexity. However, after applying Se-
quentialFeatureSelector, only 3 were selected as key predictors (#1,
#17, #22). This result highlights that some classification complexity
measures have high dependence on each other, resulting in potential
redundancy. For example, 𝐶F1v conceptually shares many similari-
ties with 𝐶N1 when two classes fall between “partial overlap” and
“separate” (Fig. 2-d2). As a result, once a complexity measure has
been selected by a feature selector (e.g., 𝐶F1v), similar measures,
such as 𝐶N1, may not improve the regression model since 𝐶F1v

satisfies 𝐶N1’s role.
We found that the slight majority—14 out of 26 features—are

“within-class” features. The result may seem counter-intuitive given
how when we conceptually consider VCS, we would think task per-
formance would stem from the feature interactions or differences
between the two classes. Rather, our results highlight that within-
class features, particularly min/max attributes, dominate more than
between-class features. We speculate that this result stems from the
perceptual operations required for VCS tasks, such as perceptual
organization and ensemble coding. The visual features created by
the distribution of data along the different dimensions can leverage
the global (i.e., ensemble coding) and local (i.e., perceptual organi-
zation) visual configuration of a multi-class scatterplot: people may
reason over both broader structures characterizing the full class as
well as individual points. Szafir et al. [81] discuss how ensemble
coding can help people quickly estimate the position of a group of
scatterplot points without attending each point individually. Given
the short-duration nature of our user study, we speculate similar
mechanisms also translate for VCS tasks. The interplay of local
encoding (i.e., within-class features) influences the perceived global
structure, which can affect people’s scatterplot selection.

6.1.2 Do existing VCS measures align with human perception?
Of the 70 features, we included four existing VCS measures,
including 𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇. Past studies highlight how
𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 is best-performing VCS measure [9], and it
was ranked second within our final set of weighted features. How-
ever, results from Analysis 1 show that there was 32% mismatch
between𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 and human perception, highlighting
the opportunity to improve the effectiveness of VCS measures. De-
spite the results from Analysis 1, the final set of weighted features
highlights the possibility of𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 supplementing
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Table 5: Comparison of𝐶F1v,𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇, and our composite feature derived from the 26 features. For𝐶F1v, we compute
(1 − 𝐶F1v) to make the comparison easier: i.e., larger value, clearer VCS. For task pairs in (a), while 𝐶F1v correctly identifies a
scatterplot with the majority votes,𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇 does not. In (b), we can see the opposite pattern. However, our composite
variable provides correct predictions for all these examples.

(a) 𝑪F1v agrees with participant
votes

Task pair 1 Task pair 2

Participant votes 14 1 13 2
1 -𝐶F1v 0.72 0.05 0.39 0.00
𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇𝑡1 0.77 0.86 0.11 0.58
Our composite feature 2.52 -0.19 -0.54 -2.24

(b) 𝑮𝑶𝑵𝑮 0.35 𝑫𝑰𝑹 𝑪𝑷𝑻𝒕1
agrees with participant votes

Task pair 3 Task pair 4

Participant votes 14 1 14 1
1 -𝐶F1v 0.06 0.62 0.15 0.45
𝐺𝑂𝑁𝐺 0.35 𝐷𝐼𝑅 𝐶𝑃𝑇𝑡1 0.81 0.10 0.86 0.20
Our composite feature -1.25 -3.31 1.02 -1.66

𝐶F1v, likely by providing information that 𝐶F1v cannot capture
(e.g., neighborhood relationships). These features employ neighbor-
based and class centroid-based approaches, respectively. Conse-
quently, this result suggests a hybrid design of the two approaches
as a potential way to better develop VCS measures and use them
for robust measures. Our cross-validation demonstrates how our
composite feature model can achieve an 84.2% average accuracy for
predicting VCS performance, exceeding 16.6% accuracy compared
to the best-performing existing VCS measures.

6.2 Limitations and Future Work
Given the sizes and variance of real-world datasets, we reduced
our dataset size to a manageable scale in order to conduct our user
study. Despite this down-scale, it was still infeasible to perform an
exhaustive combination of task pairs. We mitigated this challenge
by picking task pairs that adhered to certain criteria to maximize
the range of possible feature values within our study. However,
this approach does not provide full coverage of the space of fea-
ture values. Future work should extend these results to additional
scatterplots, potentially using our results as a means to identify
candidate features to explore in greater detail.

We encoded classes for our experimental stimuli using common
categorical colors: blue and orange. However, prior studies indicate
colors can influence people’s graphical perception [80, 87]. Future

work should investigate how color encoding or other means for
class representation might change perception for VCS tasks.

Our study mainly used scatterplots with less than 10,000 points.
Given how people typically analyze much larger datasets when us-
ing dimensionality reduction methods, future work should consider
the challenges of larger datasets for VCS. As noted in Sec. 6.1.2,
increasing the number of points can help uncover how scale affects
underlying perceptual mechanisms (e.g., ensemble coding, percep-
tual organization) and subsequent VCS perceptions. Although our
crowdsourced user study used scatterplots with fewer than 10,000
points, our experiments cover a wide range of point counts from as
low as 50 up to 9,999. Additionally, our task pairs also cover con-
ditions where there are diverse differences in point counts. While
features related to point counts have some impact on VCS tasks,
they were not among the top influential features (cf. Sec. 5.2). Future
work can use our study as a reference to understand the relationship
between performance and scale.

Lastly, our user study results rely on the class complexity mea-
sures and our instantiated measures of Sedlmair et al’s conceptual
features [78]. We acknowledge that there might be essential scat-
terplot features that were not captured by these measures. Further
research effort is required to more comprehensively extract multi-
class scatterplot features and understand the relationships to VCS.
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One way of uncovering these features is a bottom-up method: con-
duct the aforementioned perceptual studies to gather data on how
humans perform VCS and then develop new measures.

6.3 Call for Future Research
We encourage future work to build upon our efforts and further
investigate our second research question. From our study, we were
unable to provide a conclusive answer given our two analysis results.
Future research can use our 70 features and scatterplot generation
method (Sec. 4.2) as an extension of this work.

Aligning to our third key observation, future work should inves-
tigate the interrelational effect between local and global structures
of a multi-class scatterplot for VCS tasks. Research highlights how
this interplay is common for other conventional visualizations, such
as networks [48, 60]. Analysts must also simultaneously attend to
the local and global structure of a network for a given network task
(e.g., estimating the size of a network [54]) We encourage future
work to leverage and apply these existing methods as another step
towards robustly measuring and developing VCS measures. As a
concrete suggestion, we recommend future work to measure how
quickly users can orient themselves to the global structure of the
multi-class scatterplot, such as the distribution of scatterplot points,
sizes, colors, and orientations.

7 Conclusion
We investigate (1) what are the key scatterplot features that influ-
ence human perception of VCS and (2) whether existing VCS mea-
sures align with human perception. We conducted a crowdsourcing
user study with 150 participants to evaluate 294 representative
scatterplots and 70 multi-class scatterplot features. Our statistical
analyses not only uncovered strong associations among these 70
measures and participants’ scatterplot selections but also opens a
new set of questions for researchers to further investigate.
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