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Figure 1: Inspection of t-SNE results with our tool, t-viSNE: (a) overview of the results with data-specific labels encoded with

categorical colors; (b) the Shepard Heatmap of all pairwise distances; (c) t-SNE parameters and input data; (d) scatterplot

showing the density of neighborhoods in the original high-dimensional space; (e) scatterplot showing the final cost (Kullback-Leibler

Divergence) of each point; (f) parallel coordinates plot (PCP) of data features, density of neighborhoods, and cost for every point.

ABSTRACT

The use of t-Distributed Stochastic Neighborhood Embedding
(t-SNE) for the visualization of multidimensional data has proven to
be a popular approach, with applications published in a wide range
of domains. Despite their usefulness, t-SNE plots can sometimes
be hard to interpret or even misleading, which hurts the trustwor-
thiness of the results. By opening the black box of the algorithm
and showing insights into its behavior through visualization, we
may learn how to use it in a more effective way. In this work, we
present t-viSNE, a visual inspection tool that enables users to ex-
plore anomalies and assess the quality of t-SNE results by bringing
forward aspects of the algorithm that would normally be lost after
the dimensionality reduction process is finished.
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1 INTRODUCTION

Machine learning approaches are widely used to perform various
tasks, such as the detection of clusters from abstract data or the
analysis of multivariate data. However, understanding their imple-
mentation details and interpreting their results are not always trivial
tasks. The visual analysis of machine learning techniques and mod-
els is a recent and rapidly growing topic in visualization research,
with results showing that it is a viable and efficient method [3, 4].

In this extended abstract, we present our ongoing work on a
visualization tool, called t-viSNE, which is designed to allow the
investigation of the t-Distributed Stochastic Neighbor Embedding
(t-SNE), a well-known machine learning algorithm that has been
very popular since its proposal in 2008 [6]. We bring forward some
of the hidden internal workings of the algorithm which, when visu-
alized, may provide important insights about the characteristics of
the multidimensional data set. Our visualization approach supports
the following tasks: (i) quality check of distance preservation with
a Shepard Heatmap, (ii) exploring the density of multidimensional
neighborhoods, (iii) highlighting badly-optimized cases by showing
the remaining cost for each point, and (iv) the presentation of data
set features using a Parallel Coordinates Plot (PCP).

2 BACKGROUND AND RELATED WORK

Dimensionality Reduction (DR) techniques reduce the original di-
mensions of the data set maintaining—as much as possible—its
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original structure. When used for visualization, the output is set
to two or three dimensions, and the results are commonly visual-
ized with scatterplots, where similar objects are modeled by nearby
points, and dissimilar objects are modeled by distant points. Classic
DR techniques include Principal Components Analysis (PCA) and
Multidimensional Scaling (MDS), but more recent non-linear DR
techniques have shown promise in the visualization of complex real-
world data sets, with t-Distributed Stochastic Neighbor Embedding
(t-SNE) being among the most popular (for a comprehensive review,
see [7]).

In t-SNE, each item i of a data set is initially modeled as a
neighborhood-based probability distribution Pi j , where a high prob-
ability means that j is a close neighbor of i (in the original multidi-
mensional space). Each Pi j follows a Gaussian distribution centered
at i, with the item-specific variances si obtained by searching for
a value that results in a target entropy controlled by the perplexity
parameter [6]. In practice, that means the Pi j of an item i located in
a denser region (in the multidimensional space) will use a small si,
while one in a sparser region will use a larger value. Similarly to Pi j
(but not identically), another probability distribution Qi j is obtained
from a candidate low-dimensional representation of the data set,
and a total cost is computed as the sum of the Kullback-Leibler
Divergences between Pi j and Qi j for each i. This cost is then mini-
mized by iteratively improving the low-dimensional representation
of each point i, so that the newly updated Qi j matches—as best as
possible—its original distribution Pi j .

The issues with interpreting and assessing the quality and trust-
worthiness of DR-produced scatterplots have been recognized and
tackled in different ways. One of the most common ways to get
insights into the differences between pairwise distances of points in
the original and final spaces is by using a Shepard Diagram [2], a
scatterplot where each point represents a pair of data set elements,
and the two axes map their distances in the original and final spaces.
A good embedding would result in all points being close to the
diagonal of the scatterplot since the original and final pairwise dis-
tances would be as similar as possible. Other works have proposed
to extract different types of distance- or neighborhood-preservation
measures to compare the low-dimensional embedding to the original
data, often mapping these measures over the scatterplot itself in
different ways (e.g., [1, 5]). Our proposal is similar to these in intent
and method, but while previous works focused on DR-independent
measures (i.e., measures that work with any embedding), we pro-
pose with t-viSNE to extract the measurements/values directly from
t-SNE itself, making it a technique-specific tool.

3 T-VISNE: VISUALIZATION AND INTERACTION DESIGN

After the user loads a data set and runs t-SNE with the selected
parameters (Fig. 1c), different perspectives of the obtained results are
shown in the various views of the tool. The Overview (Fig. 1a) shows
the points and their data-specific labels using a categorical colormap
(and a slider for setting the radius of the embedded data points). The
Shepard Heatmap is a aggregated version of the Shepard Diagram,
where each cell shows the density, i.e., the number of points, in
each region of the diagram. This was done to avoid clutter and to
increase the readability of the Shepard Diagram for large data sets.
Both axes were scaled between 0.0 (minimum distance) and 1.0
(maximum distance). The Sigma Plot (Fig. 1d) shows the value of
1/si (i.e., the inverse of si, so that high values mean more density) of
each point color-encoded over the points themselves. As discussed
in Sec. 2, this value represents the different densities of the high-
dimensional neighborhoods of each point, which is a valuable piece
of information from the original data space. By mapping it over the
points themselves, we allow the visual comparison of original and
final neighborhood arrangements. The KLD Plot (Fig. 1e) shows
the final value of KLD(Pi||Qi), i.e., the remaining cost after the last
iteration, for each point (with a different colormap). This allows the

user to investigate which points (or groups of points) were positioned
by t-SNE in good configurations regarding their neighbors (low
remaining cost) and which were not well optimized even after all the
iterations (high remaining cost). This information affects the local
trustworthiness of different areas of the plot. Finally, the Parallel
Coordinates Plot (Fig. 1f) provides a way for the user to explore the
actual features of the data set in more detail and to correlate them
to the patterns found in the previously-described plots. It offers two
main interactions: (i) linked brushing with the other plots, such that
only selected points are highlighted; and (ii) filtering and rearranging
of axes, such that the user may choose which dimensions to see (and
how they will be shown) at any given time.

4 EXAMPLE OF APPLICATION: WINE QUALITY

We illustrate our tool with a data set composed of red wine samples
from the north of Portugal described by physicochemical dimensions
such as acidity and residual sugar, and a sensory classification of
their quality1. From the Overview (Fig. 1a), we can observe that
the labels are not well-separated by the t-SNE layout and are mostly
randomly distributed throughout the plot. The user might think that,
due to this, there would be large values for the remaining costs all
over the plot, but the reality is the opposite: the remaining KLD
values are very low in most of the plot, except for a hot spot in the
middle, see Fig. 1e. Comparing the hot spot to the overview, there is
no apparent correlation with the label distribution. Thus, we have
found an area of the plot that has not been well-optimized and must
either be investigated further or removed from the analysis; that
area would have been impossible to differentiate from the others
without the visualization. Furthermore, there is apparently no drastic
change in density anywhere in the overview. However, the Sigma
Plot (Fig. 1d) shows that there is a gradient of increasing density that
follows the layout roughly from left to right. Such an information
might be important to the analyst, since denser neighborhoods (in
the original space) may indicate more cohesive groups of data items.
In fact, by looking at the overview, there is one apparent cluster of
blue points in the bottom-right corner that might be hypothesized as
a dense cluster of points. Comparing this cluster to the Sigma Plot,
it appears that this hypothesis might not be correct, because the plot
actually shows low densities in that area.

5 CONCLUSION AND FUTURE WORK

In this poster, we presented a visual inspector that helps the user to
explore t-SNE’s behavior and avoid potentially wrong interpretations
of the results. As future work, we will improve t-viSNE by extending
the information provided to the user and performing an evaluation.
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