
Reification of Program Points for Visual Execution

Stephan Diehl
Computer Science Department

Saarland University
Saarbrücken, Germany

diehl@acm.org

Andreas Kerren
Computer Science Department

Saarland University
Saarbrücken, Germany
kerren@cs.uni-sb.de

Abstract

Existing reification techniques for Java only allow for in-
spection and manipulation of Java programs on the class,
object and method level, but not at the level of individ-
ual program points. In this paper we introduce a reifi-
cation technique of program points based on source-to-
source transformations. Our reification method allows for
the association of arbitrary meta-information with program
points and to manipulate it during execution. We present ex-
amples of the innovative use of such reified program points
for visualizing the execution of Java programs.

1 Introduction

Algorithm animation systems are tools to produce and/or
interact with dynamic graphical representations of compu-
tations. Such animations are meant to support understand-
ing of algorithms and thus are used as teaching aids as well
as development tools [12, 21, 7, 5].

Interesting events (IEs) are widely used in algorithm an-
imation systems and usually lead to a system architecture
based on the MVC design pattern (model, view, control)
which is a combination of the Observer, Composite and
Strategy patterns [14]. The program is annotated at impor-
tant program points with an IE. Whenever execution reaches
an IE, information about the current program state is sent to
all registered views.

Based on the above mentioned prototypical architecture
we developed the GANIMAL framework [9] to ease the cre-
ation of interactive algorithm animations. To specify such
animations we developed the language GANILA as an ex-
tension of Java. It provides a powerful set of features inte-
grating concepts of different classical algorithm animation
systems: Interesting events and views (BALSA [4]), step-
by-step execution and breakpoints (BALSA-II [2]) and par-
allel execution (TANGO [20]). In addition it offers new
features like alternate interesting events and alternate code

blocks, foresighted graphlayout [6], mixing of post mortem
and live/online algorithm animation, controlled visualiza-
tion of loops and recursion, as well as the visualization of
invariants for program points and blocks. Controlled visu-
alization allows the execution of certain program points to
be visualized, e.g. the last five executions of a loop or ev-
ery second invocation of a recursive method. Many of these
features can be changed at runtime, i.e. the user can select
at run time whether two program blocks should be executed
in parallel or not, or which of two alternate program blocks
should be executed. Most of these features heavily rely on
the existence of reified program points. By virtue of reified
program points a program can inspect and manipulate its
own behavior at the level of program points at runtime.

We will use the term reification to mean the
conversion of an interpreter component into an
object which the program can manipulate. One
can think of this transformation as converting
program (...) into data. We will use the term
reflection to mean the operation of taking a
program-manipulable value and installing it as a
component in the interpreter. This is thus a trans-
formation from data to program.

– D.P. Friedman and M. Wand [13]

The reification technique presented in this paper is based
on source-to-source transformations carefully designed to
preserve the semantics of the original Java program. Most
transformations require previous static analyses of the pro-
gram including type inference and live variables analysis.
The results of these analyses are used to preserve the context
(scope of variables and type of expressions) and control-
flow when moving code inside a new method. Our compiler
called GAJA generates for each program point a method
which contains the actual program code for the program
point and an object providing meta information about the
program point. In this paper we use the term ’settings’ to
refer to this meta information. Ideally, a reified program

Andreas Kerren
Proceedings of the IEEE International Workshop on Visualizing Software for Understanding and Analysis, VisSoft 2002, pages 100-109, 2002.© IEEE Computer Society Press 2002

point should be an object containing both settings and pro-
gram code. This could be achieved by subclassing for each
program point an abstract class ProgramPoint and overwrit-
ing a certain method with the code for this program point.
As a consequence the number of generated classes would
be proportional to the number of program points. Separat-
ing program points and settings allows us to have only a
fixed number of classes for settings, while for each class of
the source program we generate exactly one target class.

This paper is organized as follows. Section 2 gives exam-
ples of settings used in our implementation. Section 3 de-
scribes the reification of pure Java programs and Section 4
describes the architecture of our visualization system and
the reification of GANILA annotations. In Section 5 some
practical results are presented and in Section 6 related work
is discussed. Section 7 presents some concluding remarks.

2 Settings

After reification we can associate with every program
point arbitrary information and change it at runtime using
a GUI (see Figure 1) or whenever the program point is exe-
cuted. In our current implementation we have the following
settings:

� break point: If the current program point is a break
point, the execution stops and the user can inspect the
program state or resume execution.

� interesting event: The current program point is an in-
teresting event and it can be active or not.

� visits: At each execution of a program point a counter
can be initialized or increased to count the number of
iterations of a loop or the depth of a recursive call 1

� invariants: This program point is the start or end of a
block for which a certain invariant should be checked,
the invariant is added or removed from the invariant
view 2.

� parallel execution: This is a virtual program point, its
setting determines whether its two blocks are sequen-
tially executed or in parallel.

� alternate: This is a virtual program point, its setting
determines which of its two blocks is executed.

� folding: This is a virtual program point consisting of
an IE and a block. If this node is active then the IE
is sent and none of the IEs contained in the block are
used. If it is inactive then the IEs in the block are sent.
In either case, the instructions in the block are exe-
cuted.

1In our current implementation only loop counters are supported.
2The invariant view is currently under development.

� mode: At this program point the animation mode is set
to PLAY or RECORD.

Note that we could also store a reference to the abstract
syntax tree of the program point in the settings but so far,
this has not been not required by our applications.

Figure 1. Graphical user interface to change
settings at runtime

3 Reification of Java Programs

Reification of program points could be realized in vari-
ous ways including a meta-interpreter, direct translation into
code for the Java Virtual Machine (JVM) or even by extend-
ing the JVM.

However, it soon became apparent that the
JVM and Java were tightly coupled, and any lan-
guage that compiles into the JVM would lose lit-
tle in efficiency – and gain much in clarity – by
translating into Java as an intermediate stage.

– M. Odersky and P. Wadler [19]

To illustrate how the GAJA compiler reifies program
points we will now look at several example programs. First
we discuss the translation of pure Java programs addressing
sequences of instructions, method invocations, and control-
flow statements. In the next section we look at the transla-
tion of the language extensions provided by GANILA. To
improve readability, we have removed exception handling
code from the generated code shown throughout the paper.

2

3.1 Simple Statements

In our first example we define a class Example1 with a
single method start(). Both an object variable x, that is
a non-static variable, and a local variable y are accessed in
the method body.

ganila class Example1 {

int x;

public void start(String[] argv) {

int y = 2;

x = x + y; // program point 0

y = x * y; // program point 1

}

}

From the code for the class Example1 we generate a class
Example1Algorithm. To reify the two program points in this
method, we generate a method dispatch_0() for the first
and dispatch_1() for the second program point.

Both variables x and y must be accessible in the gener-
ated method bodies. As the generated methods are defined
as object methods in the same class, x is still accessible
in these methods, whereas the local variable y is explicitly
passed as an argument to the generated methods. To pass
variables from one context to another we provide wrapper
classes Gint, Gboolean, etc. for all primitive types 3. We
use the wrapped values as L-values and unwrapped values
as R-values.

By invoking the method passControlToGUI() before ex-
ecuting each program point, the GUI gets access to the cur-
rent state and can intervene. For example it could check
wether the current program point is a break point, wait for
the user to press a key to proceed execution, or just sleep
for a few milliseconds to delay execution. Furthermore it
could check whether an invariant still holds and it can high-
light the current program point in the code view, a window
containing the program code.

public class Example1Algorithm

extends GAlgorithm {

Gint x = new Gint();

public void start(String[] argv) {

Gint y = new Gint(2);

passControlToGUI(0);

dispatch_0(y);

passControlToGUI(1);

dispatch_1(y);

}

3The wrapper classes Integer, Boolean, etc. in java.lang are
final. Thus we had to define our own wrapper classes to be able to add
visualization methods and additional information.

public void dispatch_0(Gint a1) {

x.setValue(x.getValue()+a1.getValue());

}

public void dispatch_1(Gint a1) {

a1.setValue(x.getValue()*a1.getValue());

}

}

Using the above transformation scheme code
for the common dispatch behavior, here calls to
passControlToGUI() , is repeatedly generated. If we
want to change this later on, we would have to change
the compiler. To improve maintainability of the com-
piler we introduce another level of indirection as can
be seen in the generated code below. The generated
class Example1Algorithm inherits the predefined, generic
method dispatch() from the class GAlgorithm which in
turn invokes passControlToGUI(). To execute a program
point, a call to the general method dispatch() is generated
in place of the original program point.

public class Example1Algorithm

extends GAlgorithm {

...

public void start(String[] argv) {

Gint y = new Gint(2);

dispatch(0,new Object[]{y});

dispatch(1,new Object[]{y});

}

...

}

The call dispatch(pp,new Object[]{arg1; : : : ; argn})

invokes the method dispatch_pp(arg1; : : : ; argn) via Java
Reflection. If we want to change the dispatch behavior later
we no longer have to change the compiler, but we can just
change the definition in the class GAlgorithm.

public class GAlgorithm {

...

public synchronized ControlFlow

dispatch(int pp, Object[] args) {

passControlToGUI(pp);

Class c = getClass(), params[];

if (args == null) params = new Class[0]

else params = new Class[args.length];

params = new Class[];

for (int i=0;i<params.length;i++) {

params[i] = args[i].getClass();

}

Method m = c.getMethod("dispatch_"+pp,

params);

3

Object o = m.invoke(this,args);

if (o instanceof ControlFlow)

return (ControlFlow) o;

return new ControlFlow();

}

}

3.2 Control Flow Statements

In the above example we had a simple control flow, just a
sequence of two assignments. In the following example we
look at method calls with return values and a conditional
statement. Other control flow instructions like loops and
the switch statement are translated in a similar way.

ganila class Example2 {

int x;

public void start(String[] argv) {

int y = 2;

x = max(x,y); // program point 0

}

public int max(int a, int b) {

if(a > b) // program point 1

return a; // program point 2

else

return b; // program point 3

}

}

Once again we generate methods for each of the four pro-
gram points. We introduce ControlFlow objects to handle
break, continue and return statements. Using our reifi-
cation technique nested blocks are translated into nested
calls of dispatch()-methods. The execution of one of
the statements listed above will terminate the execution
of the current block and continue in one of the enclosing
blocks. Hence we will refer to this block as the target
block. In the translated program termination of a block is
implemented by returning from a dispatch()-method with
a ControlFlow object as its return value. All intermediate
dispatch()-methods just pass this value to their caller until
it reaches the translation of the target block. In our exam-
ple the target block of the return statement is the body of
the method max(). If the ControlFlow object represents a
return statement, the return is now executed using the value
contained in ControlFlow object as the return value.

public class Example2Algorithm

extends GAlgorithm {

Gint x = new Gint();

public void start(String[] argv) {

Gint y = new Gint(new Gint(2));

dispatch(0,new Object[]{y});

}

public Gint max(Gint a, Gint b) {

ControlFlow cfl =

dispatch(1,new Object[]{a,b});

if (cfl.isReturn) return (Gint)cfl.value;

}

public void dispatch_0(Gint a1) {

x.setValue(max(x,a1).getValue());

}

public ControlFlow dispatch_1(Gint a1,

Gint a2) {

if (a1.getValue() > a2.getValue()) {

ControlFlow cfl = dispatch(2,

new Object[]{a1});

return cfl;

} else {

ControlFlow cfl = dispatch(3,

new Object[]{a2});

return cfl;

}

return new ControlFlow();

}

public ControlFlow dispatch_2(Gint a1) {

return new ControlFlow("return",

new Gint(a1.getValue()));

}

public ControlFlow dispatch_3(Gint a1) {

return new ControlFlow("return",

new Gint(a1.getValue()));

}

}

It is noteworthy that the throw statement does not have
to be wrapped in a ControlFlow object, because throw au-
tomatically terminates all intermediate blocks or method in-
vocations until it reaches the matching catch-clause.

4 Reification of GANILA Programs

The language GANILA extends Java with annotations to
control the visual execution of Java programs. The GAJA
compiler generates code which in combination with the run-
time system produces the interactive animations. In the gen-
erated code all program points of the annotated classes are
reified as discussed above.

4

4.1 Interesting Events

In GANILA we write interesting events as method calls
with the prefix *IE_. They transfer local information in their
arguments to the different views.

public boolean isPrime(int n) {

*IE_Prime(n);

// rest of method body

...

}

At runtime instead of the above method call, an event
object of class GEvent is created. It contains the follow-
ing information: the current program point, the current an-
imation mode isRecord(), the activation state of the event
in the GUI isVisibleEvent(pp), the environment for the
meta-variables in the controlled visualization of loops and
recursion getLoReDepth(), the name of the event, and the
arguments of the original method call.

public Gboolean isPrime(Gint n) {

dispatch(4, new Object[]{n});

// translated code for rest of method body

...

}

public void dispatch_4(Gint a1) {

GEvent e;

e = new GEvent(4,

isRecord(),

isVisibleEvent(pp),

getLoReDepth(),

"Prime",new Object[]{a1});

control.broadcast(e);

}

Such a GEvent is send to the control object. The control
object forwards it to all registered views. Each view can
have its own settings and decide whether it will invoke its
event handler for this interesting event. So far our events
work very much like those in other multi-view event-based
algorithm animation systems like ZEUS [3], except for all
the additional information stored in the events and the fact
that our program points are reified.

As a result our system provides features not present in
any of the algorithm animation systems we are aware of
[12, 21, 7, 5]. The use and implementation of these features
are discussed in the remainder of this section.

4.2 Animation Modes

The GANILA code below shows how to annotate the al-
gorithm to enable post mortem visualization. In particu-
lar the recording mechanism allows for the mixing of post
mortem and live/online algorithm animation.

*RECORD;

// Code containing IEs to be recorded

*REPLAY;

By default algorithms are executed in PLAY mode. In
this mode all interesting events are immediately executed.
The instruction *RECORD selects the RECORD mode. In
this mode all interesting events are not executed, but stored
by the control object in their dynamic order. The instruction
*REPLAY first executes all recorded events. Then it switches
into PLAY mode.

Many naive post-mortem visualization systems work like
this. They just replay recorded events. Although they actu-
ally know the whole story before they even draw the first
line, they do not exploit this fact to improve the visual out-
put. As a simple example consider a visualization that pro-
duces just textual output line by line in a window. If we
use online visualization, the window must have a scrolling
function. If we use post-mortem visualization looking at the
whole text before the first line is printed, the window or font
size can be adapted to fit all text onto the screen.

As a consequence recording and replaying events needs
some extra effort to enable views to produce better output
when using post-mortem visualizations. In our system for
each interesting event *IE_eventname a view has to imple-
ment the following methods:

� IE_eventname_Play_Visible() produces visual out-
put and internal state changes.

� IE_eventname_Play_Invisible() produces no visual
output, but internal state changes. This method is in-
voked for deactivated interesting events, such that sub-
sequent active events are executed in a consistent in-
ternal state.

� IE_eventname_Record_Visible() produces no visual
output, no internal state changes, except for computing
additional information used for post mortem visualiza-
tion. When the event is replayed later on the method
IE_eventname_Play_Visible() is invoked. It can ex-
ploit this additional information.

� IE_eventname_Record_Invisible() produces no vi-
sual output, no internal state changes, except for com-
puting additional information used for post mortem vi-
sualization. When the event is replayed later on the
method IE_eventname_Play_Invisible() is invoked.
It can exploit this additional information.

To relieve the programmer from implementing all these
methods, the GAJA compiler produces adapter classes [14]
for the views. If the programmer only wants to use online
visualization and naive post mortem visualization, he has to
write code for the method IE_eventname_Play_Visible().

5

To support non-naive post mortem visualization the remain-
ing three methods must be programmed.

We refer the interested reader to our work on Fore-
sighted Graphlayout [6] for more complex examples of non-
naive post-mortem visualization using a generic algorithm
to draw sequences of evolving graphs while preserving the
mental map [18].

4.3 Controlled Visualization of Loops

Next we explain how counting visits of program points
and switching between different animation modes can be
used to visualize certain iterations of a loop.

Often interesting events are placed within loops or re-
cursive method invocations. If the iteration or recursion is
part of a larger algorithm, it can be annoying that all iter-
ations or invocations are visualized. For the user it could
be very boring to watch 100 iterations where it could be
sufficient for understanding the algorithm to see just the
last three iterations. To enable such a selective visualiza-
tion, GANILA allows to annotate Java’s loop statements
(do, while, for) with visualization conditions. These are
written within brackets following the loop condition:

ganila class Example3 {

public void start(String[] argv) {

int s = 0;

for(int j=0;j<100;j++) // program point 0

[($n-$i<5)&&($i%2==1)] {

if(isPrime(j)) { // program point 1

s = s + j;

*IE_Add(s,j);

}

}

}

public boolean isPrime(int n) {

*IE_Prime(n);

...

}

}

Here the variable $i denotes the number of the current
iteration and the variable $n the maximal number of itera-
tions of the respective loop. Note, that both values can only
be computed at run time. In the example those of the last 5
iterations are visualized which are odd numbered, i.e. the
event IE_Prime(95), IE_Prime(97), IE_Add(963,97) and
IE_Prime(99).

The class Example3 is translated as before, but we also
generate special settings for the program point 0, i.e. the one
of the loop and extend the general dispatch() method. It
records all events until the last iteration is reached. Then the
value of $n is known and it can resend the relevant events.

The visualization condition is translated into a test method
checkVisits() which is part of the settings.

st[0] =

new Settings(0, new Object[]{

new Visits_Setting(true,

"($n-$i<5)&&($i%2==1)") {

public boolean checkVisits(int $i, int $n) {

return ($n-$i<5)&&($i%2==1);

}

}

});

We insert three new method calls into the general
dispatch() method of Section 3:

public synchronized ControlFlow

dispatch(int pp, Object[] args) {

passControlToGUI(pp);

loopIncrement(pp); // 1st new method call

... // compute c and params[] as before

loopBegin(pp); // 2nd new method call

Method m = c.getMethod("dispatch_"+pp,params);

Object o = m.invoke(this,args);

loopEnd(pp); // 3rd new method call

... // return as before

}

These functions create, delete and increment instances
of counters for a given program point. Before we explain
these functions in more detail let’s look at a more complex
example first:

void foo() {

for(...) [$n-$i<5] //program point 0

{ while(...) [$n-$i<3] //program point 1

{ x = x + 5; //program point 2

foo(); //program point 3

}

}

}

Now consider the situation after foo() has been recur-
sively called twice and the current program point is 2. At
this moment there are 4 live instances of $i and $n. Thus in
our implementation we allocate these variables on a stack,
the environment for meta-variables. To compute the value
of $n we need to record all events, get the value of $n af-
ter the last iteration and then replay all events. For this,
the methods loopIncrement(), etc. manipulate the envi-
ronment as follows:

� loopIncrement(pp): Loop counters are incremented
at the first program point in a loop. More precisely, if
the program point pp� 1 is a loop and has a loop con-
dition and the environment is not empty, this method
increases the topmost instance of $i on the stack.

6

� loopBegin(pp): Unless the program point is a loop
with a loop condition, the method does nothing. Oth-
erwise, a new entry for the loop counters is created on
the stack. The entry is used to store the values of pp,
$i and $n. If the stack has been empty before, then no
other loop condition has been currently active and this
method changes the animation mode, such that this and
all nested loops are executed in RECORD mode.

� loopEnd(pp): Unless the program point is a loop with
a loop condition, the method does nothing. Otherwise,
it pops the topmost entry off the stack. As described in
Section 4.1 every interesting event contains a copy of
the current environment for meta-variables where all
instances of $i are copied by value, while those of $n
are copied by reference. Thus this method can now
set the value of $n to the value of $i, i.e. its value
at the last iteration, and by virtue of the references it
changes in all copies of $n. If the stack becomes empty,
this method lets the control object replay all recorded
events. Then the animation mode is set to PLAY.

As a result, when a recorded event is replayed
by the control, it contains a copy of the environ-
ment with the right values for $i and $n and can
check all loop conditions now. More precisely, only
if for each entry (pp; i; n) in this environment the test
st[pp].checkVisits(i,n) is true, the event is visibly exe-
cuted by calling IE_eventname_Play_Visible(), otherwise
IE_eventname_Play_Invisible() is invoked.

Controlled visualization of recursion can be imple-
mented in a similar way, here $n is the maximal depth of
the recursion, i.e. the maximal path length in the dynamic
call tree.

4.4 Parallel Blocks

As a final example we look a the parallel operator *||. It
allows for the execution of two blocks in parallel which is
very useful to perform two animations concurrently.

ganila class Example4 {

int x = 1;

public void start(String[] argv) {

int y = 2, tmp1, tmp2;

tmp1 = x; // program point 0

tmp2 = y; // program point 1

*{ *IE_MoveTo("x","y");

x = tmp2; *} // program point 3

*|| // program point 2

*{ *IE_MoveTo("y","x");

y = tmp1; *} // program point 4

}

}

In the above program first the two assignments to tmp1

and tmp2 are executed sequentially, then the two assign-
ments to x and y as well as the respective events are exe-
cuted in parallel. As a result the corresponding animations
run in parallel. Note, that if we would use a single aux-
iliary variable, data dependencies make parallel execution
impossible. In other words, the algorithm had to be slightly
changed to enable the parallel animations.

To translate this to Java we consider the parallel opera-
tor as a program point on its own and translate it into a call
to the method executeParallel() inherited from the class
GAlgorithm. In the example the program point of the paral-
lel operator has number 2. For its two blocks we generate
the methods execute_2_1() and execute_2_2(). For sim-
plicity we have removed the translation of the interesting
events in the code below.

public class Example3Algorithm

extends GAlgorithm {

Gint x = new Gint(1);

public void start(String[] argv) {

Gint y = new Gint(2),

tmp1 = new Gint(), tmp2 = new Gint();

dispatch(0,new Object[]{tmp1});

dispatch(1,new Object[]{tmp2,y});

dispatch(2,new Object[]{tmp1,tmp2,y});

}

public void dispatch_0(Gint a1)

{ a1.setValue(x.getValue()); }

public void dispatch_1(Gint a1, Gint a2)

{ a1.setValue(a2.getValue()); }

public ControlFlow

dispatch_2(Gint a1, Gint a2, Gint a3) {

return executeParallel(2,

new Object[]{a1,a2,a3});

}

public void dispatch_3(Gint a1)

{ x.setValue(a1.getValue()); }

public void dispatch_4(Gint a1, Gint a2)

{ a2.setValue(a1.getValue()); }

public ControlFlow

execute_2_1(Gint a1, Gint a2, Gint a3) {

dispatch(3,new Object[]{a2});

return new ControlFlow();

}

public ControlFlow

execute_2_2(Gint a1,Gint a2, Gint a3) {

dispatch(4,new Object[]{a1,a3});

return new ControlFlow();

}

}

7

Based on the settings for the program point of the paral-
lel operator executeParallel() either creates two threads
to invoke the two generated methods in parallel or it invokes
them in sequence. In the case of sequential execution the
control flow object returned by the code for the first block
is first checked, before the code for the second block is ex-
ecuted.

public class GAlgorithm {

...

public synchronized ControlFlow executeParallel(

int pp, Object[] args) {

currentPP = pp;

if(st[pp].isParallelActive()) {

// execute both blocks in parallel

Thread t1 = new Thread(

new GAlgThread(this,pp,1,args));

Thread t2 = new Thread(

new GAlgThread(this,pp,2,args));

t1.start(); t2.start();

t1.join(); t2.join(); }

} else {

// execute both blocks in sequence

Class c = getClass(), params[];

if (args == null) params=new Class[0];

else params = new Class[args.length];

for(int i=0;i<parameters.length;i++) {

parameters[i] = args[i].getClass();

}

Method m =

c.getMethod("execute_"+pp+"_1",params);

Object o1 = m.invoke(this,args);

if (o1 instanceof ControlFlow

&& !((ControlFlow) o1).isEmpty()) {

return (ControlFlow) o1;

}

m = c.getMethod("execute_"+pp+"_2",params);

Object o2 = m.invoke(this,args);

if (o2 instanceof ControlFlow)

return (ControlFlow)o2;

}

return new ControlFlow();

}

}

In a similar way alternate blocks and folding of interest-
ing events (see Section 2) are translated into calls to generic
executeAlternative() respectively executeFold() meth-
ods.

5 Practical Results

The GANIMAL system comes with a set of predefined
views including a GraphView, CodeView, HTMLView for

documentation and a SoundView for acoustic feedback.
Customized views can be implemented by subclassing. In
Figure 1 the abstract syntax of a Heapsort program is shown
in the GUI. The user can set break points, select alternate
events or alternate code blocks, activate or deactivate inter-
esting events and select parallel or sequential execution of
certain blocks. Furthermore the user can control the anima-
tion using a VCR like control to start, pause or step through
the animation. Figure 2 shows a snapshot of the visual exe-
cution of this Heapsort program.

Tree ViewTree View

Stick ViewStick View

Array ViewArray View

Event ViewEvent View

Figure 2. Algorithm animation of Heapsort

We used non-naive post mortem visualization for the
interactive visualization of the generation and computa-
tion of finite state automata which is an example of the
second-order generative approach to explorative learning
in computer science [8]. These visualizations have been
integrated into an electronic textbook available online [1].
Figure 3 shows the difference between online and non-
naive post mortem visualization of the generation of a non-
deterministic automaton from a regular expression (ajb)�.
In the first row the gradually refined transition diagrams are
drawn independently, while in the second row each diagram
is drawn using a global layout for the whole sequence. A
study with more than 100 students revealed that the elec-
tronic text book with its interactive animations was as ef-
fective as a classical lecture. Many students reported that
the interaction with the system, i.e. entering regular expres-
sions and watching the generation process was highly moti-
vating and helped to dig through the theoretical text [10].

8

Figure 3. Online and Post Mortem Visualiza-
tion

6 Related Work

The Java Reflection API provides mechanisms to load,
inspect and instantiate classes and to access their methods
and variables, even if the names and signatures of these
classes, methods and variables have not been known at
compile-time. Java Reflection does not provide any mecha-
nisms to access program points at run-time.

The Java Platform Debugger Architecture JDPA [17]
consists of an API, wire-protocol and a native interface
which Java Virtual Machine implementations must provide
for debugging. Using JPDA a debugger gets information
like the current stack frame, byte code of methods, sets
breakpoints at the level of byte-code instructions and reg-
isters for certain events. The JPDA is currently not widely
supported by JVMs, not to mention JITs and other native
code compilers.

Douence and Südholt [11] propose a generic reification
technique based on program transformations. Their method
requires the availability of the source code of an interpreter
for the language and allows to selectively reify different
parts of the interpreter, presumably also those parts inter-
preting individual program points.

Lawall and Muller [16] augment programs with calls
to a generic function checkpoint() which stores the cur-
rent state of certain objects for later recovering from errors

or post mortem inspection. To improve performance they
use automatic program specialization to generate special-
ized checkpointing routines which do not traverse and store
data, for which static analyses have determined that they
have not been modified since the last check point.

7 Concluding Remarks

Our reification technique allows to access individual pro-
gram points at runtime. Arbitrary meta-information can be
associated with these program points and manipulated dur-
ing execution. The execution behavior can be extended or
modified by changing the generic dispatch() method. We
discussed several extensions which we used for visual exe-
cution of Java programs, most notably the mixing of online
and post-mortem visualization and the controlled visualiza-
tion of loops and recursion.

The reification method presented in Section 3 could
also be used for different purposes. For example, we
could introduce another level of indirection and have a
table PP that maps numbers to program points. Then
the call dispatch(pp, . . .) would invoke the method
dispatch_pp0(arg1; : : : ; argn) where pp0 = PP[pp]. By
changing entries in this table, e.g. using a GUI, the user
could build a program from fragments at runtime. This
could be useful in a constructivist approach to teaching al-
gorithms.

Besides the above application of reified program points
for visual execution of Java programs, our reification tech-
nique could also be interesting for software development.
As reflection is a key mechanism for late-composition and
thus component software [22], the question of what role rei-
fied program points could play in this context is left as fu-
ture research.

A prototypical implementation of the compiler, as well
as interactive animations including Heapsort and the gen-
eration and computation of finite automata are available.
More information about the GANIMAL project, as well as
more examples can be found online [15].

8 Acknowledgements

We would like to thank Carsten Görg. This research has
been partially supported by the German Research Council
(DFG) under grant WI 576/8-1 and WI 576/8-3.

References

[1] Beatrix Braune, Stephan Diehl, Andreas Kerren,
Torsten Weller, and Reinhard Wilhelm. Gen-
erating Finite Automata – An Interactive On-
line Textbook. http://www.cs.uni-sb.de/
GANIMAL/GANIFA.

9

[2] Marc Brown. Exploring Algorithms with Balsa-II.
Computer, 21(5), 1988.

[3] Marc Brown. Zeus: A System for Algorithm Ani-
mation and Multiview Editing. In IEEE Workshop on
Visual Languages, pages 4–9, 1991.

[4] Marc Brown and Robert Sedgewick. A system for
Algorithm Animation. In Proceedings of ACM SIG-
GRAPH’84, Minneapolis, MN, 1984.

[5] Stephan Diehl, editor. Software Visualization,
Springer State-of-the-Art Survey LNCS 2269.
Springer Verlag, 2002.

[6] Stephan Diehl, Carsten Görg, and Andreas Kerren.
Preserving the Mental Map using Foresighted Layout.
In Proceedings of Joint Eurographics – IEEE TCVG
Symposium on Visualization VisSym’01, 2001.

[7] Stephan Diehl and Andreas Kerren, editors. Proceed-
ings of the GI-Workshop ”Software Visualization”
SV2000, Technical Report A/01/2000, FR 6.2 Infor-
matik, University of Saarland, May 2000. http:
//www.cs.uni-sb.de/tr/FB14.

[8] Stephan Diehl and Andreas Kerren. Levels of Explo-
ration. In Proceedings of the 32nd Technical Sympo-
sium on Computer Science Education, SIGCSE 2001.
ACM, 2001.

[9] Stephan Diehl, Andreas Kerren, and Carsten Görg. Vi-
sualizing Algorithm Live and Post Mortem. In Soft-
ware Visualization, Springer State-of-the-Art Survey
LNCS 2269. Springer Verlag, 2002.

[10] Stephan Diehl, Andreas Kerren, and Julia Kneer.
Evaluation of the Educational Software GANIFA
(in German). http://www.cs.uni-sb.de/
GANIMAL/GANIFA/evaluation.pdf.

[11] Rémi Douence and Mario Südholt. A generic reifica-
tion technique for object-oriented reflective languages.
Higher-Order and Symbolic Computation, 14(1):7–
34, 2001.

[12] Peter Eades and Kang Zhang, editors. Software Visu-
alization. World Scientific Pub., Singapore, 1996.

[13] Daniel P. Friedman and Mitchell Wand. Reification:
Reflection without Metaphysics. In Proceedings of the
1984 ACM Conference on LISP and Functional Pro-
gramming, Austin, Texas, pages 348–355. ACM, 1984.

[14] Erich Gamma, Richard Helm, and Ralph Johnson. De-
sign Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional Comput-
ing Series. Addison-Wesley, Reading, Massachusetts,
1995.

[15] Ganimal. Project Homepage. http://www.cs.uni-
sb.de/GANIMAL, 2000.

[16] Julia Lawall and Gilles Muller. Efficient Incremental
Checkpointing of Java Programs. In Proceedings of
the International Conference on Dependable Systems
and Networks (DSN 2000). IEEE Computer Society,
2000.

[17] Sun Microsystems. JavaTM Platform Debugger Ar-
chitecture, 2001. http://java.sun.com/products/jpda.

[18] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout
Adjustment and the Mental Map. Journal of Visual
Languages and Computing, 6(2):183–210, 1995.

[19] Martin Odersky and Philip Wadler. Pizza into Java:
Translating theory into practice. In Proc. 24th
ACM Symposium on Principles of Programming Lan-
guages, January 1997.

[20] John Stasko. TANGO: A Framework and System for
Algorithm Animation. Computer, 23(9), 1990.

[21] John .T Stasko, John Domingue, Marc H. Brown, and
Blaine A. Price. Software Visualization. MIT Press,
1998.

[22] Clemens Szyperski. Component Software. Addison-
Wesley, 1998.

10

	published:

