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The development of software systems for the analysis of economic and financial
networks is a fundamental activity to contrast tax evasion, fiscal frauds, and
money laundering phenomena (see, e.g., [3, 6, 8]). Of particular interest in this
context is the design of visual analytics systems (see, e.g., [1, 4, 5, 7]).

In this poster, we present TeFNet, a new system specifically designed to
support public officers in tax evasion discovery and risk analysis. It is an evolu-
tion of TaxNet [4]: A visual analytics decision support system for tax evasion
discovery. TeFNet inherits all the TaxNet’s functionalities while overcom-
ing its main limitation: The lack of a native support for temporal queries and
visualizations. TeFNet’s main ingredients are: (i) a network data model to
represent time-varying relationships between taxpayers, called temporal fiscal
network ; (ii) a visual query language to easily define and search for suspicious
(time-dependent) patterns in a temporal fiscal network; (iii) visualization func-
tionalities to interactively explore the subgraphs that match a pattern. Both the
visual query language and the graph visualization techniques rely on a suitable
timeline approach [2, 9], which maps the time dimension to a space dimension.

Temporal Fiscal Networks. A temporal fiscal network is a directed graph
G, whose nodes represent taxpayers (persons or companies), and whose edges
represent oriented relationships between pairs of taxpayers, such as economic
transactions, shareholdings and legal acts. Each element (node or edge) of G
exists in a specific time interval (the validity period) going from an initial date
to an ending date. In addition, an element can have one or more associated
attributes, which can be static (time-independent), temporal (time-dependent),
or periodical, i.e., time-dependent according to fiscal or business calendar periods.

Visual Query Language. The visual query language of TeFNet allows
the user to define time-dependent patterns to be matched in G. A pattern p is a
pair 〈Gp, Rp〉, where Gp is a graph that defines the topology of p, and Rp is a set
of rules on the nodes and on the edges of Gp. The user can restrict the analysis
to data within a desired time range and specify a time slicing unit (e.g., year
or month) to partition the time range into intervals (slices) of the same length.
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Fig. 1. Visual query language interface of TeFNet for graph pattern definition.

She can also define, in a specific time slice or in the time range, temporal rules
on nodes, edges and related attributes. For example, in the pattern of Fig. 1, the
timeline edge e1 is used to express the presence of economic transactions from
a node n1 to a node n2 in the year 2012. This rule is defined by means of the
quantity operator ANY and it is visually conveyed in Gp by a solid filling of
the corresponding slice. Other quantity operators for a slice are SINGLE -
only one relation in that slice and NONE - no relation in that slice. A slice
without quantity operators is visually conveyed with a chess filling .

Fig. 2. Visualization of a subgraph
after some exploration steps.

Visual Exploration. In response to
a user query, TeFNet returns all the sub-
graphs that match the specified pattern.
The analysis of a result is performed
through interactive visual exploration.
Edges can be visually displayed in a stan-
dard mode or as timeline edges. A time-
line edge is visually split into slices as
in the query interface. Each slice is filled
with a color whose intensity is proportional to the value of some desired function,
which may represent the weight of the edge, e.g., the amount of the transaction,
or the presence/absence of relations. This makes it possible for the user to easily
capture in a unique view the trend of a specific parameter over the time range of
analysis. The user can also expand the analysis of a result by introducing other
neighbors in the current visualization. For example, Fig. 2 shows a visualization
of a subgraph after some exploration steps, starting from a result of the pattern
defined in Fig. 1.

We tested TeFNet in a real working environment on a real 3-year fiscal
network of approximately 800 K nodes and 1.9M edges. The experimental tasks
were performed by expert tax officers, who were asked to find subjects having
specific time-varying relations with a given taxpayer. The results show that using
TeFNet may significantly improve time and accuracy of the analysis at the IRV.
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An upward-planar drawing is a planar drawing where each edge is drawn as a
strictly y-monotone curve. While testing upward planarity of a graph is an NP-
complete problem in general [11], efficient algorithms are known for single-source
graphs and for embedded graphs [5, 6]. One notable specialization of upward
planarity is that of level planarity. A level graph is a directed graph G = (V,E)
together with a level assignment γ : V → Z that assigns an integer level to each
vertex and satisfies γ(u) < γ(v) for all (u, v) ∈ E. A drawing of G is level planar
if it is upward planar, and for the y-coordinate of each vertex v ∈ V it holds
that y(v) = γ(v). Level-planarity testing and embedding is feasible in linear time
for single-source graphs and graphs with multiple sources, the latter case being
considerably more complex [9, 13]. There exist further level-planarity variants
on the cylinder and on the torus [1, 3] and there has been considerable research
on further-constrained versions of level planarity [2, 7, 10, 12, 14].

We introduce and study the multilevel-planarity testing (Mlpt) problem,
which is a generalization of upward planarity and level planarity. Let G = (V,E)
be a directed graph and let � : V → P(Z) be a function that assigns a finite set
of integers to each vertex. A multilevel-planar drawing of G is an upward planar
drawing of G such that the y-coordinate of each vertex v ∈ V satisfies y(v) ∈ �(v).

We present linear-time algorithms for testing multilevel planarity of embed-
ded graphs with a single source (sT -graphs) and for oriented cycles. To this
end, we characterize multilevel-planar sT -graphs as subgraphs of certain planar
graphs with a single source and a single sink (st-graphs). Similar characteri-
zations exist for upward planarity and level planarity [9, 15]. The idea behind
our characterization is that we can insert edges into any given multilevel-planar
drawing of a graph so as to make it an st-graph while maintaining multilevel
planarity. This technique is similar to the one found by Bertolazzi et al. [6]
for upward planarity, and in fact is built on top of it. For the obtained st-
graphs, we may assume without loss of generality that the multilevel assign-
ment � has normal form, i.e., for all (u, v) ∈ E it is min �(u) < min �(v) and
max �(u) < max �(v). Then, we can test multilevel planarity by greedily attempt-
ing to place the vertices of G in topological order on the lowest possible level.
For oriented cycles, we identify sets of vertices of minimal cardinality that have
to be placed on the lowest and highest possible levels. Assuming a multilevel-
planar drawing exists, the remaining vertices can then be placed greedily as low
as possible between them. Both algorithms test multilevel planarity in linear
time and generate a multilevel-planar drawing within the same running time.
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Fig. 1. (a) The sT -graph formed by three task gadgets (red, green and blue sub-
graphs). (b) A rectilinear embedding of a planar monotone 3-SAT instance. E-shapes
above/below the variables are clauses containing only negative/positive literals. (c) The
gadget for a positive clause. (d) The gadget for a negative clause.

Complementing these algorithmic results, we show that Mlpt is NP-complete
even in very restricted cases, namely for sT -graphs without a fixed embedding,
for trees and for general embedded ST -graphs (graphs with multiple sources and
sinks). This contrasts both the upward planar and level planar setting, where
these problems are solvable in polynomial time (see Table 1 for a full comparison).

The first two reductions use the strongly NP-complete single-processor
scheduling problem with individual release times, deadlines and processing times.
For a set of tasks there exists a non-preemptive one-processor schedule if and
only if a crossing free nesting of the task gadgets in the sT -graph shown in
Fig. 1(a) exists. Using similar gadgets, this sT -graph can be transformed into a
tree. Here the release time and deadline of a task define the interval of possible
levels for each of the gadgets vertices. The number of vertices in the gadget is
the processing time.

To show NP-completeness for embedded ST -graphs, we give a polynomial
reduction from planar monotone 3-SAT [8]. Given a rectilinear embedding of
the variables and clauses as in Fig. 1(b), we substitute the E-shaped clauses by
the gadgets shown in Fig. 1(c,d). Now there is a multilevel-planar drawing, if
and only if there is a truth assignment of the planar monotone 3-SAT instance.

Table 1. Result overview

Not embedded Fixed combinatorial embedding

Trees sT -graph Cycle sT -graph ST -graph

Upward planarity O(1) [4] O(n) [6] O(n) [5] O(n) [5] P [5]

Multilevel planarity NPC NPC O(n) O(n) NPC

Level planarity O(n) [13] O(n) [13] O(n) [13] O(1) [13] ?
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1 Introduction

Regional landmarks play an important role in facilitating wayfinding and orien-
tation in navigation tasks [7]. Information such as “the route goes around the
city center” or “there is a right turn after going along the park” represent spa-
tial relations between polygonal objects and a route. Schematic visualizations
are used for the cognitively adequate representation of such spatial relations
[4]. Some commercial schematic maps make use of regional landmarks (urban
areas, parks, lakes, forests). In contrast to topographic maps, they change shape,
orientation and scale of the polygons to emphasize their topological function.

Although regional landmarks are used in commercial maps, related work
focusing on route [1, 3] or network schematization [5, 6, 10] does not consider such
landmarks at all. Publications addressing schematization of regional landmarks
or subdivisions [2, 9] do not consider their spatial relation with paths. Since such
landmarks are more important as references in route maps for drivers than in
transit maps, there is a need for an algorithm that can produce route maps with
regional landmarks, highlighting their correct spatial relation with the path.

In this contribution, we describe a new approach for drawing polygonal land-
marks over an already schematized route. For the topological correct schema-
tization, the method makes use of affine transformations and an adaptation of
Nöllenburg-Wolff’s Mixed Integer Programming (MIP) for metro map drawing
[6]. The advantage of using MIP over Buchin et al. method for polygon schema-
tization [2] is that it allows results with higher level of abstraction by enforcing
the correct topology with hard constraints while aesthetics are optimized in the
objective function. We are able to emphasize crossings by constraining angles,
and line alongness1 by manipulating control points. The results resemble regional
landmarks drawn by designers in commercial schematic maps.

2 Approach

To test the proposed method we read and planarize OpenStreetMap route data
and polygonal geometries in its surrounding area, such as parks, lakes, urban

This research was supported by the ERC StRG Grant Agreement No 637645.
1 Line alongness: the ratio of the region boundary being parallel to a path.
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areas. For polygons overlapping the route, extra vertices are added at each cross-
ing dividing the polygon into paths (sections). For polygons disconnected from
the route, we select two vertices of the polygon as control points and two cor-
responding extra vertices are added to the route in order to hold their relative
positions. The control points are selected based on their distance to the route (d),
and the distance to the beginning/end of the linear referencing of the polygon
against the route (l). We want d and l to be simultaneously minimized.

After the planarization process is completed the route is schematized. The
schematization rescales the route parts, restricts edges orientation to the octi-
linear angles, forces fixed angles at decision points, while bends and shape dis-
tortion are minimized at the same time. Details on route schematization process
are omitted for space reasons but we use similar approach as in [3].

With the newly calculated schematic position of the route vertices, we use
affine transformation to transpose the polygons. For polygons crossed by the
route, the transformation is made to their resulting paths independently, and the
crossings themselves are used as references by the transformation. For polygons
disconnected from the route, the pair of control points and their correspondent
vertices in the route are used to readjust their position. We allow this adjustment
to be looser or tighter depending on the spatial relation we want to highlight.

After the affine transformation is applied to the polygons or their sub-
sections, the transposed geometries are submitted to the schematization process.
The schematized geometry of the route is sent to the polygon schematization
process to preserve their mutual topology. For the schematization process, we
adapt Nöllenburg-Wolff’s MIP inequalities. We use the hard constraints for octi-
linearity and edge spacing [6] to ensure the correct topology with the route. One
limitation of the edge spacing constraint, is that it requires the route and the
polygons to have the same edge orientation restriction.

For the objective function, we combine three soft constraints that are summed
together and can be weighted by independent parameters. To enhance similar-
ity to the original shape of the polygon, we use Nöllenburg-Wolff’s function
to preserve relative positions. Additionally, we add a new function that pre-
serve location by minimizing distance between old and the new polygon vertices
position in the L1-norm. To enhance abstraction, we use a similar bend cost
function as Nöllenburg-Wolff’s one, which penalizes bends along the resulting
polygon shape. That way similarity and abstraction is balanced by adjusting
the parameters.

3 Conclusion and Future Work

Using our application and real data of Münsterland-Germany, we were able to
create drawings of schematized regional landmarks that emphasizes particular
spatial relations with a route (e.g, line alongness and crossings). Next, we want to
formalize the approach for the ten groups of path-polygon topological relations
described by Shariff et al. [8], and later extend the method to be applicable with
more complex street networks. Finally, we want to develop empirical experiments
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with participants to test how the spatial relations are interpreted and recalled
in navigation tasks as compared to topographic maps.
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Abstract. We study beyond-planarity for graphs of low degree. In par-
ticular, we aim at establishing tight bounds for values of d such that every
graph of degree at most d belongs to a certain beyond-planarity class.

Beyond-planarity is a central topic in graph drawing, studying algorithmic
and combinatorial properties of non-planar graphs. The most-studied beyond-
planarity classes include: (i) k-planar graphs, where each edge crosses at most
k edges, (ii) quasiplanar graphs, which disallow 3 mutually crossing edges, (iii)
fan-planar graphs, where an edge only crosses a fan (a set of edges incident to a
common vertex), (iv) fan-crossing-free graphs, where no edge crosses a fan, and
(v) RAC k-bend graphs, where crossings happen at right angles and edges have
at most k bends. For further definitions and state of the art, see [11].

Our goal is to establish upper and lower bounds for values of d such that
every graph of degree at most d belongs to a certain beyond-planarity class.
Table 1 summarizes the state of the art, including our results.

To prove that for any fixed k > 0 there exists an infinite family of bipartite
Hamiltonian degree-3 graphs whose members are not k-planar, we employ an
argument based on the crossing number of the n-vertex 3-regular graph known
in the literature [14] as cube-connected cycles CCCn. This graph is constructed
starting from the n-regular hypercube graph [12] Qn = (Vn, En), whose 2n ver-
tices are denoted by distinct n-digit binary numbers; then, two vertices are joined

Table 1. The largest (second column) and smallest (third) value of d such that all
(not all) degree-d graphs belong to certain beyond-planarity classes.

Graph class Feasible Infeasible

k-planar Hamiltonian bipartite 2 3 (CCCn, Theorem1)

fan-planar Hamiltonian bipartite 2 3 (CCCn, Corollary 1)

quasi-planar 4 [2] 10 (K11, ref. [1])

RAC (0-bend) 2 4 (K4,4, ref. [10])

RAC (0-bend) Hamiltonian 3 [5] 4 (K4,4, ref. [10])

RAC 1-bend 3 [4] 9 (K10, ref. [3])

RAC 2-bends 6 [4] 148 (K149, ref. [6])

fan-crossing-free 3 [2] 5 (K5,5, Theorem 2)
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by an edge in En if and only if their binary representations differ in a single digit.
To obtain CCCn, each vertex v of Qn is replaced with a cycle of length n.

Graph CCCn has n2n vertices and 3n2n−1 edges, and its crossing number is
known [15] to be larger than 1

204n−(9n+1)2n−1. Hence, there is an edge with at
least

⌈
1
15

2n

n − 6 − 2
2n

⌉
crossings, which shows that, for every k ≥ 1, graph CCCn

is not k-planar for every n so that k <
⌈

1
15

2n

n − 6 − 2
2n

⌉
. Since, for even values

of n ≥ 6, graph CCCn is bipartite and Hamiltonian [13], we have the following.

Theorem 1. For every k ≥ 1, there exist infinitely many bipartite Hamiltonian
3-regular graphs that are not k-planar.

Note that Theorem 1 could also be derived from random graph theory [8].
As observed in [2], every degree-4 graph is quasiplanar, since it has thickness

2. Thus, Theorem 1 provides an alternative proof that, for any fixed k, there
exist quasiplanar graphs that are not k-planar [7]. Further, since every fan-planar
drawing of a 3-regular graph is a 3-planar drawing, we have the following.

Corollary 1. There exist infinitely many 3-regular bipartite Hamiltonian graphs
that are not fan-planar.

Alam et al. [2] observed that every degree-3 graph that can be decomposed
into a matching and a set of cycles is fan-crossing-free and quasiplanar at the
same time. This result can be extended to every degree-3 graph as follows1. First,
contract vertices of degree at most 2 and remove self-loops and bridges, to obtain
a 3-regular bridgeless simple graph, which admits the required decomposition
by Petersen’s theorem; then, reinsert the contracted or removed edges while
maintaining the fan-crossing-free and quasi-planarity properties.

We prove that this result cannot be extended to degree-5 graphs, by showing
that the 5-regular complete bipartite graph K5,5 is not fan-crossing free. We
prove this by means of a stronger result, namely a characterization of the com-
plete bipartite fan-crossing-free graphs, analogous to existing characterizations
for other beyond-planarity classes [9, 10].

Theorem 2. The complete bipartite graph Ka,b, with a ≤ b, is fan-crossing-free
if and only if (i) a ∈ {1, 2}, or (ii) a ∈ {3, 4} and b ≤ 6. In particular, K5,5 is
not fan-crossing-free.

We pose as future goal to further narrow the gaps between the bounds
described in Table 1. In particular, the main open question is whether degree-3
graphs are RAC; this long-standing question has been posed already several
times and is the one that first triggered our study. Note that the fan-crossing-
free and quasiplanarity properties are necessary conditions for a graph to be
RAC. In this sense, the extension of the result by Alam et al. [2] to all degree-
3 graphs is an important step towards an answer to this question. Another
intriguing question that stems from our results is whether degree-4 graphs are
fan-crossing-free. Finally, the upper bounds for d concerning quasiplanar, RAC
1 We thank an anonymous reviewer of GD’18 for suggesting this extension.
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1-bend, and RAC 2-bend graphs presented in Table 1 descend from the known
upper bounds on the maximum edge density of graphs in these classes [1, 3,
6]; it would be interesting to prove the existence of some low-degree graphs not
belonging to these classes by exploiting direct arguments.
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1 Introduction

The crossing number of a graph G, denoted by cr(G), is the minimum number
of edge-crossings over all drawings of G on the plane. To date, even the crossing
numbers of complete and complete bipartite graphs are open. For the crossing
number of the complete bipartite graph Zarankiewicz [6] showed that

cr(Km,n) ≤
⌊
n

2

⌋⌊
n − 1
2

⌋⌊
m

2

⌋⌊
m − 1

2

⌋
,

and conjectured that equality holds. Harary and Hill [4] and independently
Guy [3] conjectured that the crossing number of the complete graph Kn is

cr(Kn) =
1
4

⌊
n

2

⌋⌊
n − 1
2

⌋⌊
n − 2
2

⌋⌊
n − 3
2

⌋
=: H(n).

The construction of Harary and Hill is a so-called cylindrical drawing, in
which the vertices lie on the circles of a cylinder, and edges of the graph cannot
cross the circles. Towards the Zarankiewicz Conjecture, these drawings can be
restricted to bipartite cylindrical drawings, in which each set of the vertex par-
tition lies on its own circle. A k-circle drawing of a graph G is a drawing of G
in the plane where the vertices are placed on k disjoint circles and the edges do
not cross the circles. The k-circle crossing number of a graph G is the minimum
number of crossings in a k-circle drawing of G. For the special case when G is a
c© Springer Nature Switzerland AG 2018
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k-partite graph, we can further require that each of the k vertex classes is placed
on one of the k circles. The corresponding crossing number is called the k-partite-
circle crossing number and is denoted by cr k©(G). Richter and Thomassen [5]

showed that cr 2©(Kn,n) = n
(
n
3

)
. Ábrego, Fernández-Merchant, and Sparks [1]

generalized this result for m ≤ n to

cr 2©(Kn,m) =
(
n

2

)(
m

2

)
+

∑

0≤i<j≤m−1

(⌊ n

m
j
⌋

−
⌊ n

m
i
⌋) (⌊ n

m
j
⌋

−
⌊ n

m
i
⌋

− n
)
.

2 Our Results

We investigate the tripartite-circle crossing number of the complete tripartite
graph. Drawings that minimize the number of crossings are good, i.e., no edge
crosses itself and any two edges share at most one point. We develop methods to
count the number of crossings in good drawings and provide concrete drawings
to obtain upper bounds.

Theorem 1. For any integers m, n, and p,
∑

{x,y}∈({m,n,p}
2 )

z∈{m,n,p}\{x,y}

(
cr 2©(Kx,y) + xy

⌊
z

2

⌋⌊
z − 1
2

⌋)
≤ cr 3©(Km,n,p)

≤
∑

{x,y}∈({m,n,p}
2 )

z∈{m,n,p}\{x,y}

((
x

2

)(
y

2

)
+ xy

⌊
z

2

⌋⌊
z − 1
2

⌋)
.

For the balanced case, Fig. 1 illustrates the drawing, and the formulas simplify
to

3n
(
n

3

)
+ 3n2

⌊
n

2

⌋ ⌊
n − 1
2

⌋
≤ cr 3©(Kn,n,n) ≤ 3

(
n

2

)2

+ 3n2

⌊
n

2

⌋ ⌊
n − 1
2

⌋
.

C

A B

Fig. 1. A tripartite-circle drawing of Kn,n,n proving the upper bound.
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Connection to the Harary-Hill Conjecture The drawings of Kn presented by
Harary and Hill [4] have H(n) crossings and consist of a 2-circle drawing of
Kn/2,n/2 together with all straight line segments joining vertices on the same
circle. Moreover, Blažek and Koman [2] presented a 1-circle drawing of Kn with
H(n) crossings. Therefore it has been asked whether a 3-circle drawing ofKn

3 ,n3 ,n3
together with all straight line segments joining vertices on the same circle can
achieve H(n) crossings. Our result proves that such a drawing does not exist.
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Lehrstuhl für Informatik I, Universität Würzburg, Würzburg, Germany
rainer.schmoeger@stud-mail.uni-wuerzburg.de,

http://www1.informatik.uni-wuerzburg.de/en/staff

In the 18th century Euler discovered his famous polyhedron formula, which can
be used to bound the edge density for planar graphs. Let G = (V,E) be a
simple and planar graph with |V | ≥ 3, then |E| ≤ 3|V |−6. Turán co-established
Extremal Graph Theory, a branch in which extremal graphs are investigated
under the assumption of specified properties. He studied the edge density of
graphs which are not necessarily planar but do not contain cliques of fixed size.

For several beyond-planar graph classes Turán-type results were discovered:

– k-planar graphs, for which there exists a drawing where no edge is crossed
more than k times are studied in [2, 5, 10–12, 15, 16].

– k-quasi-planar graphs with no set of k pairwise crossing edges are investigated
in [1, 3–5, 12, 13, 18, 19].

– Fan-planar graphs, where edges can be crossed by one fan, a set of edges
sharing one common endpoint [5, 6, 8, 9, 14].

We consider the edge density of (non-) simple k-planar graphs. A simple
graph does not contain loops or parallel edges. A non-simple multigraph has
a drawing without homotopic parallel edges and self-loops. Bodendiek et al.
first bounded the edge density of 1-planar graphs [10]. Pach and Tóth [16] gave
bounds for k-planar graphs with 0 ≤ k ≤ 4, namely |E| ≤ (k+3)(|V |−2), includ-
ing Euler’s result for planar graphs. Edge density of k-planar graphs strongly
relates to the Crossing Lemma which provides a lower bound on the crossing
number cr(G) for any graph G. They [16] used their bounds to improve it to
cr(G) ≥ 1

33.75 · |E|3
|V |2 . Later Pach et al. [15] improved the bound for 3-planar graphs

to |E| ≤ 5.5(|V |−2). A charging argument by Ackerman [2] improves the bound
for 4-planar graphs to |E| ≤ 6(|V | − 2), proving the current best constant

(
1
29

)

for the Crossing Lemma. For k ≥ 5 only a general bound has been established:
considering the number of crossings C, a lower bound by the Crossing Lemma
and an upper bound from k-planarity yields (1) and gives |E| ≤ 3.807

√
k|V |.

1
29

|E|3
|V |2 ≤ cr(G) ≤ C ≤ |E| · k

2
(1)

Pach et al. [17] recently proved a Crossing Lemma for multigraphs using
another constant (≈ 10−7), so a similar inequality to (1) leads to the following
bound on the edge density of non-simple k-planar graphs. Curiously, this appears
to be the first and only upper bound known for arbitrary k.
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Fig. 1. True planar skeletons for different values of k (left-to-right):
k = 4 [15]; 5 ≤ k ≤ 6; 7 ≤ k ≤ 9; 10 ≤ k ≤ 12.

Table 1. Bounds on the number of edges for non-simple and simple graphs; similar
bounds can also be obtained for larger values of k.

Simple [2, 16] Non-simple [Theorem 1]

k Lower bound Upper bound Lower bound Upper bound

5 6.00|V | − 16.00 8.51|V | 6.20|V | − 12.40 5000|V |
6 6.80|V | − 23.60 9.32|V | 7.00|V | − 14.00 5478|V |
7 7.00|V | − 20.00 10.07|V | 7.33|V | − 14.67 5917|V |
8 7.33|V | − 20.67 10.77|V | 7.67|V | − 15.33 6325|V |
9 7.67|V | − 21.33 11.42|V | 8.00|V | − 16.00 6709|V |
10 7.71|V | − 23.43 12.04|V | 8.14|V | − 16.29 7072|V |
11 8.00|V | − 24.00 12.63|V | 8.43|V | − 16.86 7417|V |
12 8.57|V | − 25.14 13.19|V | 9.00|V | − 18.00 7746|V |

Theorem 1. For k ≥ 1, a non-simple k-planar graph G has |E| < 2237
√
k|V |.

We also construct lower bound examples based on the structure of optimal k-
planar graphs (k ≤ 3), i.e., k-planar graphs with maximum edge density. Namely,
Bekos et al. [7] showed that every optimal non-simple 2-planar (3-planar) graph
has a regular true planar skeleton: a spanning subgraph consisting of a set of
crossing-free edges with only pentagonal (hexagonal) faces. In the original graph,
every such face is (almost) a clique, having five (eight) edges inside.

The idea of the true planar skeleton leads us to lower bounds on edge density.
Using the patterns in Fig. 1 for 4 ≤ k ≤ 12 and adding all possible edges in every
face respecting k-planarity produces a family of non-simple k-planar graphs, i.e.,
establishing lower bounds on the edge density. To use these skeletons for lower
bounds on simple k-planar graphs, we have to carefully consider how to avoid
multi edges when inserting edges. In particular, by using skeletons such as those
shown in Fig. 1, we obtain new bounds for both simple and non-simple k-planar
graphs – all discovered bounds can be found in Table 1.

Observe that the general upper bounds on the edge density of k-planar graphs
rely on a naive upper bound on the number of crossings; see (1). Additionally,
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our current best lower bound examples are based on true planar skeletons. These
remarks lead to the following questions:

Q1 Is there a better bound on the crossing number for optimal k-planar graphs?
Q2 Can we obtain better lower bounds if we do not use true planar skeletons?
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Recently an edge bundling technique known as confluent� drawing was applied
to general graphs by Bach et al. [2] by leveraging power graph decomposition (a
form of edge compression that groups similar vertices together, merging edges
shared among group members). We explore the technique further by demon-
strating the equivalence between confluent drawing and the hierarchical edge
bundling of Holten [3], thereby opening the door for existing hierarchical cluster-
ing algorithms to be used instead of power graphs to produce confluent drawings
for general graphs. We investigate various popular hierarchical clustering meth-
ods, and present a qualitative experimental comparison between them. We also
introduce a new distance measure for agglomerative clustering that outperforms
previous measures, and make recommendations for using the method in practice.

Creating the Routing Graph. The method of bundling we consider consists
of two steps: first, we find a suitable auxiliary routing graph; second, we find a
layout for this new graph, and then draw the original edges back on top, using
invisible routing nodes as spline control points. An example of this can be seen
in Fig. 1.

Fig. 1. An example of a simple graph (left), its potential routing graph (middle), and
the resultant drawing with edges bundled through routing nodes (right).

This should not be confused with the routing graph used by Pupyrev et al.
[4] in their paper on metro-style bundling, which generates a routing based on
curving around fixed node positions. Our routing is generated using the topology
of the graph itself. The benefit of this is that the bundling reflects the actual

The original definition of confluent by Dickerson et al. [1] forbids edge crossings, while
Bach et al. [2] recognize but do not strictly follow this. We continue the use of such
terminology here for consistency, but recognize its imprecise usage. A more suitable
name for the general edge bundling method of using an auxiliary routing graph should
be adopted in the future.
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structure of the data, rather than a potentially arbitrary spatial positioning. On
the other hand, the popular method of Holten [3] generates its routing using a
hierarchy already included in the data, which is easily converted into a graph
through a tree representation, where original vertices are the leaves and groups
within the hierarchy are branch nodes.

The primary purpose of this poster is to show that the work on confluent
drawings by Bach et al. [2] is also based on a routing graph, and therefore should
be classified with these previous two techniques, rather than within the realm of
confluent drawing. As such, the routing graphs generated here may also be used
to produce metro-style bundles [4].

As noted by Bach et al. [2] in their original paper, we also find that power
graph decomposition performs poorly on graphs where clusters or cliques are a
common motif, producing fractal-like artifacts (see poster for example). To alle-
viate this issue, we investigate the use of hierarchical clustering to generate the
routing instead. This requires the definition of a dissimilarity measure between
pairs of vertices, a popular choice being the Jaccard distance measure

dij = 1 − |N(i) ∩ N(j)|
|N(i) ∪ N(j)| (1)

where N(i) is the set of neighbours of vertex i. However, simply using Jaccard
distance only captures the dissimilarity of vertices with shared neighbours, and
any pair of vertices more than two hops away is automatically given a distance
dij = 1. We introduce a method of capturing such longer range dissimilarities, by
simply multiplying dij by the shortest path between them. A visual comparison
between the two can be seen in the poster, along with a further example using
a popular divisive clustering method.

Drawing the Bundled Graph. The result of a hierarchical clustering algo-
rithm is a dendrogram (a rooted tree used to describe hierarchical relationships)
which needs to be converted to a routing graph. One could simply assign unit
edge lengths to the branches, but the output of agglomerative methods also
includes a merging cost between clusters. We encode this using varying edge
lengths, and therefore require a force-directed method that explicitly includes
this. In our case we use a multidimensional scaling approach i.e. the popular
Kamada-Kawai layout. This was recently improved by Zheng et al. [5] by mak-
ing use of stochastic gradient descent, and can also be used to easily produce
optimal radial layouts (see poster for example).

The original edges are then drawn of top of this layout using b-splines con-
trolled along the shortest path through the routing graph. To improve the draw-
ing aesthetically, we also reduce the bundling strength as in Holten [3], while
full strength bundling can be used to reproduce the confluent effect utilised by
Bach et al. [2].
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Chaplick et al. [2] defined the l-dimensional affine line cover number ρld(G), for
1 ≤ l < d and an arbitrary graph G, as the minimum number of l-dimensional
planes in R

d such that G admits a crossing-free straight-line drawing whose
vertices and edges are contained in the union of these planes. The l-dimensional
weak affine line cover number πl

d(G) also counts such planes but insists only
that the vertices are covered by their union. In particular, the weak line cover
number π1

2(G) is the minimum number of lines in the plane that are necessary
to cover the vertices of a planar graph G.

Firman et al. [3] asked whether π1
2 has a sublinear upper bound for the class of

planar graphs. In the following we restrict their open problem further and make
some progress in characterizing the class of graphs that can be drawn on two lines
in the plane (further referred to as drawable). In order to verify conjectures (such
as Conjecture 1 below), we needed a drawability test. Given that drawability is
NP-hard to decide [1], we contented ourselves with exponential-time approaches.

First, we formulated drawability as an integer linear program (ILP). The
solution of the ILP yields a drawing on two lines. Without loss of generality, we
consider the case that the two lines are perpendicular and view their intersection
point as the origin of a Euclidean coordinate system with four quadrants each
incident to two half-axes. There are Boolean variables for every combination of
a vertex and a half-axis describing whether they are incident. Other variables
represent the order of the vertices on a given half-axis. The constraints ensure
that every vertex is mapped to exactly one half-axis, that the ordering on each
half-axis is transitive, and that the resulting drawing is planar.

Second, we transformed our ILP formulation into a Boolean formula in CNF
that can be tested by a SAT solver. The ILP formulation uses only binary vari-
ables and was therefore easy to transform. Our hope was that the SAT formula-
tion could be evaluated more efficiently than the ILP formulation. On our test
suite with 824 solvable and 304 unsolvable graphs, the SAT solver MiniSat (ver-
sion 2.2.0) was indeed always faster than the ILP solver IBM ILOG CPLEX
Optimization Studio (12.8.0.0). Both in terms of total computation time and
only solving time, the difference in speed was an order of magnitude.

Our experiments suggest the following.

Conjecture 1. Every planar graph with maximum degree 3 is drawable.

However, David Eppstein found a 3-regular counterexample with 26 vertices;
see Fig. 3. We verified it using our SAT formulation.
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We can show that any graph that contains nested triangles in each of its
planar embeddings is not drawable. For graphs with maximum degree 3, this
case does not arise as they can always be embedded such that there are no
nested triangles due to their low connectivity, see Fig. 1. On the other hand,
triangulations are not drawable – apart from the tetrahedron and graphs that
extend the tetrahedron in a specific way; see Fig. 2. The graph with the dashed
edges in Fig. 1 shows that not all 2-outerplanar and not all graphs of maximum
degree 4 are drawable. We also managed to extend our nested-triangle condition
to nested cycles; this yielded quadrangulations (which are obviously triangle-
free) that are not drawable.

Fig. 1. The triangular prism (solid
edges, left) is drawable (right), but its
4-regular supergraph with the dashed
edges is non-drawable.

Fig. 2. The tetrahedron (in gray) and a
family of drawable triangulations based
on it.

Fig. 3. David Eppstein’s
3-regular graph that is not
drawable on two lines.

Fig. 4. The truncated hexahedron (a 3-regular graph
with 24 vertices) drawn on two lines not using their inter-
section – and its representation as an Archimedean solid.

Our experiments also showed that all tested graphs of maximum degree 3
except the tetrahedron are not only drawable, but can be drawn on two lines
such that no edge contains the intersection of the two lines; see, for example,
Fig. 4. This could help in finding a strategy for distributing vertices on two
lines. Under this additional condition no triangulation we tested was drawable,
including any of those in Fig. 2.
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Abstract. A graph is 1-gap planar if it admits a drawing such that each
crossing can be assigned to one of the two involved edges in such a way
that each edge is assigned at most one crossing. We show that K3,14,
K4,10 and K6,6 are not 1-gap planar.

1 Introduction

A graph is 1-gap planar if it admits a drawing such that each crossing can
be assigned to one of the two involved edges in such a way that each edge is
assigned at most one crossing. The motivation comes from edge casings, where
one creates a small gap in one of the edges involved in each crossing to increase
the readability. In a 1-gap planar drawing each edge receives at most one such
gap. This notion was introduced in GD’17 by Bae et al. [1]. Among others they
showed that a 1-gap planar graph on n vertices has at most 5n − 10 edges and
this is tight. They further show that the complete graph Kn is 1-gap planar if
and only if n ≤ 8. An important observation of Bae et al. is that every 1-gap
planar graph G satisfies cr(G) ≤ |E| (since each crossing is assigned to one of the
edges). For complete bipartite graphs, they gave 1-gap planar drawings for K3,12,
K4,8 and K5,6, whereas they exclude K3,15, K4,11 and K6,7 by observing that
their crossing number is strictly greater than their edge number. They leave the
remaining complete bipartite graphs as an open problem. We show the following
theorem.

Theorem 1. The graphs K3,14, K4,10 and K6,6 are not 1-gap planar.

This shrinks the open cases to K3,13 and K4,9. We note that for all the graphs
we exclude, the crossing number equals the edge number [2]. Thus, we know that
in a 1-gap planar drawing of such a graph each edge has at least one crossing.

2 Proof Strategy

Our proof strategy is an extension of the one of Bae et al., who encountered a
similar situation when treating the case of K9, which has 36 edges and whose
crossing number is 36. For convenience, we briefly sketch their argument. Assume
for the sake of contradiction that Γ is a 1-gap planar drawing of K9, and consider
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the planarization Γ � of this drawing, where all crossings are replaced by dummy
vertices. Observe that Γ has precisely cr(K9) = |E(K9)| = 36 crossings [1]. If
two vertices of K9 share a face in Γ �, we can reroute the edge between them
without crossings in this face, thus obtaining a drawing with fewer crossings,
which is not possible. Thus, for any two original vertices their incident faces
of Γ � are disjoint. This gives a lower bound of 72 faces. On the other hand, from
Euler’s formula it follows that Γ � has only 65 faces; a contradiction.

In contrast, for complete bipartite graphs, vertices may share a face of the
planarization if they are independent. Let G = (R

.∪B,E) be a complete bipartite
graph with cr(G) = |E| = |R| · |B|. The vertices in R and B are red and blue,
respectively. As before, we consider a hypothetical 1-gap planar drawing Γ of G,
for which we know that it has cr(Γ ) = cr(G) = |E| crossings, and we denote the
planarization by Γ �. Let F denote the set of faces of Γ � and let FR, FB ⊆ F be
the faces that are incident to a red and a blue vertex, respectively. If FR∩FB �= ∅,
then there is a face in F that is incident to both a red and a blue vertex. We can
route the edge between them without crossings and thus reach a contradiction as
in the case of K9. By assumption, Γ � has |R|+|B|+|E| vertices and |R|·|B|+2·|E|
edges, and hence |F | = 2 · |R| · |B| − |R| − |B| + 2 faces.

Consider the auxiliary bipartite graph GR = (R ∪ FR, ER) where a face
and a vertex are adjacent if and only if they are incident in Γ �. The graph
GB = (B ∪FB, EB) is defined analogously. Observe that |ER| = |EB | = |R| · |B|
since each vertex in R has degree |B| and vice versa. We argue that either GR

and GB are both trees, or one of them, say GR, is a cycle decorated with leaves
in FR and the other one, GB , is a forest with two connected components.

In the former case, we obtain |ER| = |R| + |FR| − 1, which gives |FR| =
|R| · |B| − |R| + 1 and likewise |FB | = |R| · |B| − |B| + 1. Hence |FB | + |FR| =
2 · |B| · |R| − |R| − |B| + 2 = |F |. In the latter case, the number of faces in
FR decreases by 1, but the number of faces in FB increases by 1. In all cases
we find that |FR| + |FB | = |F |, i.e., each face of Γ � is either in FR or in FB.
A contradiction is reached by showing that there exists at least one white face
of Γ � that is not incident to any red or blue vertex.

First it follows from the fact that each edge has a gap that there is a cycle C
in Γ � that only contains dummy vertices. This can be seen as follows. We start
in any dummy vertex and follow the edge that does not have its gap there to
its own gap. Repeating this step eventually produces the desired cycle C. If all
red and blue vertices lie inside (outside) C, then C contains a white face in its
exterior (interior). Otherwise it separates a component of GR from a component
of GB . Further analysis yields a contradiction. The details vary depending on
whether G is K3,14, K4,10 or K6,6 as well as on the size and structure of the
components that are separated by C.

3 Conclusion

We have shown that K3,14, K4,10 and K6,6 are not 1-gap planar. We leave open
the cases of K3,13 and K4,9. It seems difficult to adapt our proof technique
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to these cases since their crossing numbers are strictly smaller than their edge
number, which results in additional freedom for possible 1-gap planar drawings.
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The Harary-Hill Conjecture states that the crossing number of the complete
graph Kn is equal to:

H(n) =
1
4

⌊
n

2

⌋⌊
n − 1
2

⌋⌊
n − 2
2

⌋⌊
n − 3
2

⌋
.

In general, if S is the unit sphere in R
3, then a spherical drawing of a graph

G is one in which the vertices of G are represented as distinct points in S, and
every edge is a shortest-arc connecting its corresponding ends. Although the
Harary-Hill Conjecture is known to be true for certain classes of drawings of
Kn, it is yet unknown that spherical drawings have at least H(n) crossings.

In the proofs of [1,3] showing that rectilinear drawings of Kn have at least
H(n) crossings, a crucial point was to relate the number of crossings in a given
drawing to the separation properties of the

(
n
2

)
lines extending the edges. Under-

standing these separation properties, but for the curves extending the edges in
spherical drawings, serve as our motivation for studying arrangement of pseudo-
circles extending the edges of a drawing.

An arrangement of pseudocircles is a set of simple closed curves in the sphere
in which every two curves intersect at most twice, and every intersection is a
crossing. If γ is a simple closed curve, then a side of γ is one of the two disks in
S bounded by γ. In spherical drawings, the great circles extending the edge-arcs
form an arrangement of pseudocircles.

With the aim of finding a combinatorial extension of spherical drawings anal-
ogous to how pseudolinear drawings extend rectilinear drawings, there have been
two significant questions under active consideration:

(Q1) Do the edges of every good drawing of Kn in the sphere extend to an
arrangement of pseudocircles?

(Q2) If the edges of a drawing of Kn extend to an arrangement of pseudocircles,
is there an extending arrangement in which any two pseudocircles intersect
exactly twice?
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These questions were indeed considered by a working group at the 2015
Crossing Number Workshop in Rio de Janeiro.

In this work, we answer these questions by showing that (1) there is a drawing
of K10 (Fig. 1c) in which there is no extension of its edges into an arrangement
of pseudocircles; and (2) there is a drawing of K9 in which there is an extension
of its edges into an arrangement of pseudocircles, but no such extension exists
for which any two curves cross exactly twice.

(a) (b) (c)

Fig. 1. Construction of a K10 with whose edges cannot be extended to an arrangement
of pseudocircles.

To construct the examples we consider the basic gadget in Fig. 1a. This has the
property that if we extend its three edges into an arrangement of pseudocircles,
then either the pseudocircle extending the edge with two degree 1 vertices is
drawn in the bounded face of the drawing or the two pseudocircles extending the
other two edges are drawn in the bounded face. Overlapping two basic gadgets
as in Fig. 1b yields a drawing not extendible to an arrangement of pseudocircles;
Fig. 1b can be enlarged to the non-extendible drawing of K10 in Fig. 1c. A similar
construction, but using two disjoint copies of the basic gadget, yields the drawing
of K9 answering (Q2) in the negative form.

Among the five non-isomorphic drawings of K5 in the sphere, there are two
that are non-rectilinear. The class of convex drawings of Kn is obtained by for-
bidding the two non-rectilinear K5s. Convex drawings (or locally rectilinar draw-
ings) were introduced in [2] in the context of the Harary-Hill Conjecture, where
it is shown that there is a possibility that every optimal drawing of Kn is convex.

In this work we show that every h-convex drawing, a special kind of convex
drawing, can be extended into an arrangement of pseudocircles. Furthermore,
the extension satisfies that if two vertices x and y are on the same side of a
curve extending an edge, then the edge xy is drawn on that side of the curve.
Moreover, we prove that any drawing of Kn with a pseudocircular extension of
such kind is h-convex.

Related to (Q2), we also show that h-convex drawings have a “better” exten-
sion in which pseudocircles are pairwise intersecting. This, and the fact that
h-convex drawings can be decomposed into two pseudolinear drawings, suggest
that h-convex is, possibly, the right definition for pseudospherical drawings of
Kn.
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1 Introduction

We propose a new graph kernel for graph classification and comparison using
Ollivier Ricci curvature. The Ricci curvature of an edge in a graph describes the
connectivity in the local neighborhood. An edge in a densely connected neigh-
borhood has positive curvature and an edge serving as a local bridge has negative
curvature. We use the edge curvature distribution to form a graph kernel which
is then used to compare and cluster graphs. The curvature kernel uses purely the
graph topology and thereby works for settings when node attributes are not avail-
able. The computation of the curvature for an edge uses only information within
two hops from the edge and a random sample of O(1/ε2 log 1/ε + 1/ε2 log 1/δ)
edges in a large graph can produce a good approximation to the curvature dis-
tribution with error bounded by ε with probability at least 1 − δ. Thus, one can
compute the graph kernel for really large graphs that some other graph kernels
cannot handle. This Ricci curvature kernel is extensively tested on graphs gen-
erated by different generative models as well as standard benchmark datasets
from bioinformatics and Internet AS network topologies.

Graph classification and comparison are widely applied in bioinformatics,
vision and social network analysis. One of the most popular approaches in prac-
tice is using graph kernels which compute the similarity of two graphs in terms
of subgraph structures. Many graph kernels have been developed, which differ
by the subgraph structures they focus on, such as random walks [2], shortest
paths [1], subtrees [5], and cycles [3]. Graph kernels have been extensively tested
on benchmark datasets from bioinformatics to chemistry [1, 4].

In our work, we focus on the setting of unlabeled graphs and propose a new
graph kernel based on discrete Ricci curvature which takes only the network
topology as an input. Our work is motivated by the use of curvature related
kernels in shape matching. Curvature on a smooth surface defines the amount
by which a geometric object deviates from being flat or straight. It is a local
measure at each point but nevertheless has deep connections to global topology
and structures. Despite the success in shape matching, curvature has not been
used much for comparing graphs. In this paper, we propose to use curvature
distribution of graphs to build new graph kernels. The goal is to demonstrate
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Fig. 1. The 2D Ricci Curvature histogram of MUTAG graphs which describes the cur-
vature distribution for pairs of neighboring edges. A suitable choice of mass distribution
on the neighborhood results in curvature always ranging between [−1, 1]. Graphs in
the same class tend to have similar histogram distributions. Here MUTAG:22 and
MUTAG:24 belong to the same class, while MUTAG:182 and MUTAG:183 belong to
another class.

that the Ricci curvature distribution and kernels can be efficiently computed
and capture interesting graph properties. They add to the family of graph fea-
tures and kernels, could be combined with other attributes, and used for other
classifiers.

2 Discrete Ricci Curvature

For an edge uv, define a distribution mu,mv on the neighborhood of u, v respec-
tively (such as uniform mu and mv). Now compute the Earth Mover Distance
W (u, v) from mu to mv, where the cost of moving mass from a neighbor ui of u
to a neighbor vj of v is the shortest path distance in the graph. Here the edges are
unweighted unless they inherit weights arising from the application domain, such
as tie strength or distances. For example, W (u, v) will be upper bounded by 2 for
unweighted graph if we allocate 50% mass to the node’s neighbor. The Ollivier-
Ricci curvature is defined as w(uv) = 1 − W (u, v)/d(u, v), where d(u, v) is the
length of edge uv. Intuitively the curvature captures the structural properties of
the local neighborhood. If uv stays in a well connected, dense neighborhood, the
curvature is positive; if uv is locally a bridge, its curvature is negative.

3 Ricci Curvature Graph Kernel

We define the Ricci Curvature Kernel as the following. Denote the curvature
distribution of all edges in G by D(G) and that of G′ by D(G′). We use the
standard Gaussian RBF kernel: k(G,G′) = exp(−||D(G) − D(G′)||22/2σ2), where
||D(G) − D(G′)||2 is the �2 norm of two vectors D(G), D(G′). Since the kernel
depends on the curvature distribution, the distribution is less robust statistically
for small graphs. We could boost up the kernel by considering the curvature dis-
tribution for pairs of neighboring edges {(w(e), w(e′))}. It appears to be more
effective in practice. See Fig. 1 for an example. When the graph is really large,
computing the curvature distribution might be costly (O(|G.E| ∗ n3) where n is
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the size of concerned neighborhood). Random sampling can be used to approx-
imate the curvature distribution. Taking O(1/ε2 log 1/ε + 1/ε2 log 1/δ) edges
uniformly at random from the graph G, it can be shown that D̂(G), the curva-
ture distribution on the sampled edges, is a good approximation of D(G) with
error bound ε with probability 1−δ. Notice that the running time does not even
depend on the size of the graph n.
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1 Introduction

Nowadays many big complex networks are abundant in various application
domains, such as the internet, finance, social networks, and systems biology.
Examples include web graphs, AS graphs, Facebook networks, Twitter networks,
protein-protein interaction networks and biochemical pathways. However, com-
puting good visualization of big complex networks is extremely challenging due
to scalability and complexity.

Recent work for visualizing big graphs uses a proxy graph approach [3]: the
original graph is replaced by a proxy graph, which is much smaller than the
original graph. The challenge for the proxy graph approach is to ensure that the
proxy graph is a good representation of the original graph.

Eades et al. [2] presented proxy graphs using the spectral sparsification app-
roach. Spectral sparsification is a technique to reduce the number of edges in a
graph, while retaining its structural properties, introduced by Spielman et al. [5].

More specifically, they present a method for computing proxy graphs, called
DSS (Deterministic Spectral Sampling), by selecting edges with high resistance
values [5]. Their experimental results confirmed the promises by Spielman et al.:
i.e., the spectral sparsification based methods are more effective than Random
Edge sampling based method.

It was left as an open problem to compare the spectral sparsification based
proxy graph approach with other graph sampling based proxy graph methods.

2 Our Results

In this poster, we introduce a new method called Spectral Sparsification Vertex
(SSV-I) for computing proxy graphs using the spectral sparsification approach.
Roughly speaking, we define resistance values for vertices, using the sum of
resistance values of incident edges then we select vertices with high resistance
values.

Suppose that G = (V,E) is a graph with a vertex set V (n = |V |) and an
edge set E (m = |E|). Let r(v) represents a resistance value of a vertex v, and
r(e) represents a resistance value of an edge e. Let deg(v) represents a degree of
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a vertex v (i.e., the number edges incident to v), and let Ev represents a set of
edges incident to a vertex v.

More specifically, we define resistance value for each vertex v as below:

r(v) =
∑

e∈Ev

r(e)

We now describe a new method called SSV-I (Spectral Sparsification Vertex)
for computing spectral sparsification based proxy graph G′ = (V ′, E′) of G =
(V,E). Let V ′ consist of the n′ of largest effective resistance. Then G′ be the
subgraph of G induced by V ′.

Our experimental results with both benchmark real-world graphs and
synthetic graphs using graph sampling quality metrics, visual comparison with
various graph layouts and proxy graph quality metrics [3] show significant
improvement by the SSV-I method over the Random Vertex (RV) sampling
method.

Our main contribution and findings can be summarised as follows:

1. We introduced a new method called Spectral Sparsification Vertex (SSV-I)
for computing proxy graphs using the spectral sparsification approach.

2. Experimental results with sampling metrics confirm that the SSV-I shows sig-
nificant improvement over RV method. To be precise, around 35% improve-
ment SSV-I over RV method on average in most metrics.

3. We observed that the Backbone layout [4] shows better structure for Bench-
mark graphs (i.e., real-world data), esp. scale-free graphs, and the Organic
layout [1] produces better shape for Black-hole graphs (i.e., synthetic graphs).

4. Visual comparison of proxy graphs computed by SSV-I and RV using Bench-
mark, GION, and Black-hole data sets using the Backbone and Organic lay-
outs confirms that our new SSV-I method produces proxy graphs with better
connectivity structure with similar visual structure to the original graph than
RV.

5. Experimental results confirm our hypothesis that the SSV-I method performs
better than RV in proxy quality metrics, esp., when the relative density is
low.

6. We observed that the Backbone layout performs better than the Organic
layout in terms of the improvement in proxy quality metrics computed by
SSV-I over RV method.
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1 Introduction

Recent work for visualizing large graphs uses a proxy graph method [3]:
the original graph is replaced by a proxy graph, which is much smaller than
the original graph. The challenge for the proxy graph approach is to ensure that
the proxy graph is a good representation of the original graph. However, previous
work to compute proxy graphs using the random sampling methods often fail to
preserve the important global skeletal structure and connectivity of the original
graph [4, 5].

For example, Zhang et al. presented experimental comparison of different
sampling algorithms under various sampling metrics [5]. Wu et al. presented
user studies to investigate how sampling methods influence graph visualization,
in terms of human perception of high degree vertices, clusters and coverage
area; it was recommended to use Random Walk (RW) for high degree vertex,
Random Jump for clustering, but to avoid Random Vertex (RV) sampling [4].
In particular, Random Vertex and Random Edge sampling often produce a set
of disconnected proxy graphs [4].

The BC (Block Cut-vertex) proxy graph methods, based on the BC tree
decomposition of a connected graph into biconnected components, produced
better results than the random sampling based methods. However, the bottle-
neck was when graphs have giant biconnected components [2]. In particular, the
performance gain for real-world graphs was smaller, due to the existence of single
dominant component in real-world graphs.

Therefore, it was left as an open problem and future work is to conduct
further experiments, by combining with other graph partitioning methods [2].

2 The SPQR Tree

The SPQR tree of a biconnected undirected graph G represents the decompo-
sition of G into triconnected components [1], which can be computed in linear
time.

We use basic terminology of SPQR trees; for details, see [1]. Each triconnected
component consists of real edges (i.e., edges in the original graph) and virtual
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edges. (i.e., edges introduced during the decomposition process, which represents
the other triconnected components, sharing the same virtual edges defined by
cut-pairs).

Each node ν in the SPQR tree is associated with a graph called the skeleton
of ν, denoted by σ(ν), which corresponds to a triconnected component. There
are four types of nodes ν in the SPQR tree: (i) S-node, where σ(ν) is a simple
cycle with at least three vertices; (ii) P-node, where σ(ν) consists of two vertices
connected by at least three edges; (iii) Q-node, where σ(ν) consists of two vertices
connected by two (real and virtual) edges; and (iv) R-node, where σ(ν) is a simple
triconnected graph with at least four vertices.

In this poster, we use the SPR tree, a simplified version of the SPQR tree
without Q-nodes, since the Q-node consists of two vertices and edges.

3 Our Results

This poster introduces new SPQR proxy graph methods, integrating graph sam-
pling methods with the SPQR tree [1] to maintain the important global connec-
tivity structure of the original graph.

We present two new families of proxy graph methods SPQR-W and SPQR-E,
each contains the five most popular sampling methods, including RV (Random
Vertex), RE (Random Edge), IRE (Induced Random Edge), RP (Random Path)
and RW (Random Walk), used in previous work [2–5].

More specifically, we first include the separation pairs of the original graph to
proxy graphs, since separation pairs are structurally important vertices in terms
of connectivity. Then, SPQR-W proxy graph methods perform sampling using the
original sampling algorithms.

SPQR-E algorithm is a Divide and Conquer algorithm that uses SPQR-W algo-
rithms: it first selects separation pairs, and then performs SPQR-W algorithms for
each triconnected component νi, i = 1, . . . , k of G to compute a proxy graph G′

i

of σ(νi), the skeleton of ν. Finally, it merges G′
i, i = 1, . . . , k, into the final proxy

graph G′ of G.
Note that the skeleton σ(ν) consists of virtual edges and real edges. Since

such virtual edges do not exist in the original graph, we only sample real edges
of σ(ν).

The main contribution of this poster is summarized as follows:

1. We present two new families of proxy graph methods SPQR-W (SPQR-Whole)
and SPQR-E (SPQR-Each). Each family consists of five new methods, inte-
grating the SPQR tree decomposition with the most popular five sampling
methods, used in the sampling-based proxy graph method [2, 3].

2. Experimental results using graph sampling quality metrics, proxy quality met-
rics [3] and visual comparison with real world graphs show that our new SPQR
proxy graph methods produce significantly better results than the previous
methods [2, 3].
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1 Introduction

The classic Knight’s Tour Problem asks for a sequence of knight moves in an n×n
chess board that allows the knight to visit every square exactly once and return to
the starting position. There is a long history of algorithms for producing knight
tours (e.g., see [1, 3]). However, most of them produce complex tours. We consider
the problem of finding knight’s tours minimizing two metrics of complexity: the
number of turns and the number of crossings. A turn is when two consecutive
knight moves in the tour go in different directions (i.e., when the three cells
involved are not collinear); a crossing is when the line segment connecting the
cells of two knight moves intersect. To the best of our knowledge, these metrics
are new in this context, but they are often studied in geometric contexts and,
in the case of crossings, in graph drawing. (However, people have looked at the
related problem of the longest knight path without any crossings [2].)

We use a novel approach to produce a family of knight’s tours for n×n boards
(where n is even, since, otherwise, a tour does not exist) with a near-optimal
number of turns and crossings (see Results). Our approach also has several other
good qualities: (i) the knight move at any given cell can be determined in con-
stant time without constructing the tour explicitly; (ii) it can be generalized to
rectangular boards (as long as both sides do not have odd length, in which case
a tour does not exist), and (iii) it the tours are easy to visualize and construct
without the need of computers or calculations.

Results. Our tours have 10.75n + O(1) turns and 13n + O(1) crossings, where
the constant factors are quite small but vary slightly depending on n mod 8.
For instance, if n ≡ 2 mod 8, the constants are 40.5 and 91, respectively. Since
a knight must turn at any cell next to the edge of the board, any knight tour
must have at least 4n turns.1 Similarly, by examining the ways to cover the first
two rows (or columns) on each side of the board, we can show that there is at
least one crossing per column per side. Therefore, the number of crossings must
be also be at least 4n. Therefore (for sufficiently large values of n) our tours are
within a factor of ≈ 2.7 and 3.25 of the minimum.
1 This lower bound can be improved to 4.25n by observing that cells close to the

center of the board must be part of a sequence of moves that must contain a turn
that is not in one of the cells along the boundary. We omit this slight improvement
for brevity.
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Fig. 1. (a) Knight’s tour on a 34 × 34 chess board with 320 turns and 429 cross-
ings (Other dimensions at [4]). (b) Corresponding sequence of “formation moves”.
(c)“formation moves” for a group of 2 × 2 knights. In half straight moves only two of
the four knights move maintaining the 2 × 2 formation (d) corner constructions that
pair up four knight paths into two connected paths (solid and dashed).

2 Construction

We begin by covering the board (except two corners) with four knights arranged
in a 2 × 2 formation. By using the “formation moves” depicted in Fig. 1c, they
can cover the board while remaining in formation (see Fig. 1b). The main idea is
to move in zig-zag along diagonals, because diagonal moves do not create turns
or crossings. A little care must be put when selecting the moves along the bottom
and top edges of the board to make sure that every cell is visited; nonetheless, it
is not hard to do so. The issue of how to transform the four knights into a single
knight’s tour is resolved by using a special construction at the bottom-left and
top-right corners of the board (see Fig. 1d). This construction pairs up the four
knights into two connected paths at each of these two corners. This results in
either a valid knight’s tour or two disjoint cycles. However, note that there are
two alternative corners which pair up different knights; therefore, it is always
possible to set the corners to make a valid knight tour.
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