
Chapter 1
Algorithm Animation

Introduction

Andreas Kerren1 and John T. Stasko2

1 FR 6.2 Informatik,
Saarland University,
PO Box 15 11 50, D-66041 Saarbrücken, Germany.
kerren@cs.uni-sb.de,
http://www.cs.uni-sb.de/˜kerren/

2 College of Computing / GVU Center,
Georgia Institute of Technology,
Atlanta, GA 30332-0280, USA.
stasko@cc.gatech.edu,
http://www.cc.gatech.edu/˜john.stasko/

An algorithm animation (AA) visualizes the behavior of an algorithm by pro-
ducing an abstraction of both the data and the operations of the algorithm.
Initially it maps the current state of the algorithm into an image, which then
is animated based on the operations between two succeeding states in the algo-
rithm execution. Animating an algorithm allows for better understanding of the
inner workings of the algorithm, furthermore it makes apparent its deficiencies
and advantages thus allowing for further optimization.

Price, Baecker and Small [63] distinguish between algorithm animation and
program animation. The first term refers to a dynamic visualization of the higher-
level descriptions of software (algorithms) that are later implemented in software.
The second term refers to the use of dynamic visualization techniques to enhance
human understanding of the actual implementation of programs or data struc-
tures. Price, Baecker, and Small define both areas of study to collectively be
a part of Software Visualization (SV). Here in this introduction we loosen this
distinction, i.e., the discussed systems can be subsumed by the terms algorithm
and program animation.

Two extensive anthologies about software visualization were published in
1996 and 1998 [33,78]. Both provide overviews of the field. The latter one also
contains revised versions of some seminal papers on classical algorithm animation
systems as well as educational and design topics. Other published articles provide
summaries of different aspects of algorithm animation in particular, including
taxonomies [10], the use of abstraction [22], and user interface issues [39]. In this

S. Diehl (Ed.): Software Visualization, LNCS 2269, pp. 1–15, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



2 A. Kerren and J.T. Stasko

introduction we first provide a short summary of the historical development of
software visualization, especially algorithm and program visualization. In this
context we concentrate on systems that introduced new concepts.

Next, we survey some newer systems on the basis of four concepts or dimen-
sions: specification technique, visualization technique, language paradigm, and
domain specific animations. Because these systems have been developed more
recently, they usually were not discussed in the aforementioned anthologies. Due
to space limitations, however, the following sections only describe some repre-
sentative systems, with a particular focus on systems that are presented in the
seven papers of this chapter.

1 Classical Systems and Concepts

Knowlton’s movie [47] about list processing using the programming language L6
was one of the first experiments to visualize program behavior with the help of
animation techniques. Other early efforts often focused on aiding teaching [1,44]
including the classic “Sorting Out Sorting” [3,2] that described nine different
sorting algorithms and illustrated their respective running times.

Experiences with algorithm animations made by hand and the wide distri-
bution of personal computers with advanced graphical displays in the 1980’s
led to the development of algorithm animation systems. The well known system
Balsa [19,8] introduced the concept of Interesting Events (IE’s) and with it the
binding of several views to the same state. In this approach the key points of
the program are annotated with IE’s by the visualizer (the person who speci-
fies the visualization). When those IE’s are reached during execution, an event,
parameterized with information about the current program state, is sent to the
views. The successor Balsa II [9] was extended with step and break points and
a number of other features. In Zeus [11], Cat [14], and the later Java based
system Jcat [18] the views were distributed on several workstations.

The system Tango [72] implemented the path-transition paradigm [73,77]
that permitted smooth and concurrent animations of state transitions. In its
successor Polka [79], these properties were revised to facilitate easier design of
concurrent animation actions. As a front-end of Polka, an interactive anima-
tion interpreter called Samba [75] (including the later Java based Jsamba) was
developed. Samba consisted of a number of parameterized ASCII commands
that performed different animation actions. Thus, programs written in any pro-
gramming language could be animated simply by having them output Samba
commands at interesting event points.

The system Pavane [67] was noteworthy in exploring a declarative animation
paradigm in which program states were mapped to visualization states. The
animation designer simply created this mapping initially, then the program ran
and the appropriate mappings were maintained.

A number of other noteworthy algorithm visualization systems and tools
have been developed over the years. Some of the earlier efforts include systems in



Algorithm Animation 3

Smalltalk [52,32], theAladdin system [45,42], theMovie system [6], animations
for algorithms textbooks [37,38], and the Gaigs system [56].

Recently, a number of new systems have been introduced. Many of these
newer systems were presented at workshops and conferences, including the GI
workshop SV’2000 [27], the First International Program Visualization Workshop
2000 [82] and the Dagstuhl Seminar on Software Visualization 2001 [28]. In the
next four sections, we briefly describe a few of the newer systems, as well as note-
worthy earlier systems, with respect to four important dimensions: specification
technique, visualization technique, language paradigm, and domain-specificity.

2 Specification Technique

An important practical task in creating algorithm visualizations is to specify how
the visualization is connected or applied to the algorithm. SV researchers have
developed a number of approaches to this problem. In this section we will ex-
amine some of the different approaches and the systems that use the approaches.
Note that some of the systems could be classified in several categories.

2.1 Event Driven

The interesting event approach was pioneered by Balsa [19,8] and has been used
in many algorithm animation systems including its successor Zeus [11]. As men-
tioned above, the visualizer identifies key points in the program and annotates
these with IE’s. Whenever an IE is reached during execution, a parameterized
event is dispatched to the views.

The event-based framework Ganimal [31] offers some new features like al-
ternative interesting events, alternative code blocks, mixing of post-mortem and
live/online algorithm animation, visualization control of loops and recursion,
etc. Annotations are provided by the Ganila language, which are compiled into
Java. The generated code allows the association of meta-information (settings)
with each program point of the algorithm. Consequently a graphical user inter-
face can be used to change these settings at runtime of the animation.

The Animal system [69,68] also utilizes an event-based approach and provi-
des a number of advanced features for animation presentation including dynamic
flexibility of animation mappings, reverse execution, internationalization of ani-
mation content, and flexible import and export capabilities.

2.2 State Driven

An alternative approach is to specify a mapping between program and visualiza-
tion states, usually constructed by the visualizer before program execution. As
discussed above, the Pavane system was an early adopter of this technique [66,
65]. The declarative approach is also utilized by some newer systems. Leonardo
[23,24] is an integrated environment for developing, executing and animating C
programs. Visualizations are specified by adding declarations written in Alpha,



4 A. Kerren and J.T. Stasko

a declarative language, to the C program. Leonardo also supports full reversi-
ble execution by using a specialized virtual machine that executes the compiled
C program.
Daphnis is an algorithm animation system based on the use of data flow

tracing. Some aspects of abstraction in the visualization are produced fully au-
tomatically, but to prepare an animation, it is necessary to supply an external
configuration script that specifies the graphical representation and rules of trans-
lation for all the variables to be visualized. To achieve spatial or temporal sup-
pression of unimportant information, a special kind of the Petri net formalism
is applied to describe the process of algorithm execution. The Daphnis system
as well as its theoretical model are discussed further in this chapter [36].

Demetrescu, Finocchi, and Stasko provide a direct comparison of both the
interesting event and state mapping approaches in this chapter [25], identifying
some scenarios where one might be preferable to the other.

2.3 Visual Programming

Another technique for specifying algorithm animations is the use of visual pro-
gramming techniques. Visual programming (VP) seeks to make programs easier
to specify by using a visual notation for the actual program commands and sta-
tements. As a whole, VP is considered to be distinct from SV [63], but such a
graphical notation itself is a kind of statical code/data visualization.

One well-known project to embed animation capabilities into a visual pro-
gramming language (VPL) is the declarative VPL Forms/3 [20] in which anima-
tion is done by maintaining a network of one-way constraints. The developers of
this language integrated an extension of the path-transition paradigm into their
language, resulting in a unique approach to algorithm animation, e.g. a seamless
integration of algorithm animation into the language and on-the-fly exploratory
programming of an algorithm animation.

An area related to VP is programming by demonstration (PbD). In PbD,
a person demonstrates an example or an operation of a task, and the PbD-
system infers a program for this task. Dance [71,76] is a PbD-interface to the
Tango system. After the user demonstrates an animation scenario in a direct
manipulation style graphical editor, the Dance system generates ASCII code
that specifies the animation. This code is then used as input to Tango.

2.4 Automatic Animation

Perhaps the simplest way to specify an animation, at least for the algorithm de-
veloper, is to have the animation automatically generated. Total, automatic crea-
tion of algorithm animations is extremely difficult however [10], so systems have
provided differing levels of automation to specify algorithm animation. Because
automated animation creation requires little or no effort on the programmer’s
part, this approach is very well-suited to debugging [54].

An early system in this area, Uwpi [43], provided automatic animation by
using a small expert system that chose the visualization for the data structures



Algorithm Animation 5

and operations of an algorithm by attempting to infer the abstract data types
used in the program. The system could display abstractions of higher-level data
structures, even though it did not truly “understand” them.
Jeliot is a family of program animation environments some of which support

the semi-automated paradigm by allowing users to define the visual semantics of
program structures or to select the most adequate ones. One system was exclu-
sively developed for novice programmers. It supports fully automatic animation,
and does not allow any customization of the animation. Ben-Ari, Myller, Sutinen,
and Tarhio give an overview of the Jeliot family and discuss some empirical
evaluations of some of the systems in this chapter [5].

Another technique that fits this category is the use of special pseudo-code
languages in which programmers implement their code, and then the animation
is automatically produced. Algorithma 99 [21] is such an example system.

3 Visualization Technique

One of the most important tasks in SV is the design of the graphical appearance
of a visualization or animation. The display design must address a number of
different issues, e.g., what information should be presented, how should this be
done, should there be a focus on the important elements, and so on. Brown and
Hershberger give a good overview of fundamental techniques on this topic [12].
In this introduction we discuss three aspects of visualizing algorithms that have
received much attention lately: 3D Algorithm Animation, Auralization, and Web
Deployment.

3.1 3D Algorithm Animation

There may be several reasons for integrating 3D graphics into an algorithm
animation system. The third dimension can be used for capturing time (hi-
story), uniting multiple views, and displaying additional information [16]. Both
the systems Polka [81] and Zeus [15] were extended with 3D graphics ver-
sions. Brown and Najork further integrated their earlier work on the platform-
dependent Zeus3D into the Jcat system. With the resulting Java-based system,
3D animations could be run in any standard web browser [17,55]. The 3D ani-
mations were implemented using the object-oriented, scene-graph based graphics
library Java3D (plugin). In the Gasp system, Tal and Dobkin explored 3D ani-
mations of computational geometry algorithms also [83]. They created a library
of geometric data types including operations that were furnished with animation
instructions.

3.2 Auralization

In SV, audio can be used to reinforce and replace visual cues, to convey pat-
terns, to identify important events in a stream of data, and to signal exceptional
conditions [13]. Recently the mapping of information to musical sound using



6 A. Kerren and J.T. Stasko

parameters such as rhythm, harmony, melody or special leitmotifs has been stu-
died.
Caitlin [85] is a preprocessor for Pascal which allows a user to specify an

auralization for each type of program construct (e.g. a FOR statement) on the
basis of a hierarchical leitmotif design. Caitlin does not allow auralization of
data, however. Empirical studies [86] of this system show that novice program-
mers could interpret the musical auralizations, that musical knowledge had no
significant effect on performance, and that, in certain circumstances, musical
auralizations can be used to help locate bugs in programs.

The musical data sonification toolkit Muse [51] provides flexible data map-
pings to musical sounds. The data can come from any scientific source. It is
written for the SGI platform and supports different mapping types of data to
sound, like timbre, rhythm, tempo, volume, pitch and harmony.

A similiar system is Faust [88], a framework for algorithm understanding
and sonification testing. It allows simple mappings of algorithm events to sound
parameters and requires programmers to manually tag events in their algorithms.
Furthermore, the interested programmer can easily change sound synthesis al-
gorithms and add new features and attributes to these algorithms.

3.3 Web Deployment

With the growing use of the World Wide Web as a generic application and dis-
play platform, a number of recent algorithm animation systems have focused on
delivery of animations over the Web. The JSamba and JCat systems mentio-
ned earlier are two examples. Other systems presenting animations over the Web
include JHave [57], the Sort Animator [26], Jeliot [41], and Jawaa [62].

4 Language Paradigm

Different language paradigms may need different abstractions and entities to be
visualized, due to their unique styles of computation and methods for problem
solving. The survey by Oudshoorn, Widjaja, and Ellershaw [59] analyses the
visualization requirements for a variety of programming paradigms and gives a
simple taxonomy of program visualization. In the following section we consider
the most important language paradigms and illuminate some example systems.

4.1 Imperative Programming Languages

The imperative paradigm is based on the procedural approach to solve pro-
blems. From this point of view, the developer of an algorithm animation has to
find abstractions of variables, data structures, procedures/functions and control
structures. The Balsa system [9] exemplifies this paradigm.



Algorithm Animation 7

4.2 Functional Programming Languages

The most significant abstractions for functional languages are functions and data
structures. A textual browser to view the trace of the evaluation of a lazy func-
tional language is discussed in [87]. The system facilitates navigating over a trace
and it can be used as a debugging tool or as a pedagogical aid in understanding
how lazy evaluation works.

The Kiel System [7] is an interactively controlled computer system for the
execution of first-order functional programs written in a simple subset of Stan-
dard ML. In contrast to the prior discussed system, it offers ways to visualize
the evaluation process.

A formal model of traversing graphical traces of lazy functional programs is
introduced by Foubister [35]. This model provides the visual representation of
graph reduction by template instantiation, and solves some problems in display-
ing the reduction, e.g., the large size of the graphs or their planarity.

4.3 Object-Oriented Programming Languages

The object-oriented paradigm has much in common with the imperative lan-
guage paradigm. As a consequence, visualizations of object-oriented programs
typically consider abstractions of objects, including inter-object communication,
in addition to the above-mentioned abstractions for imperative languages.

One of the papers in the following chapter [58] deals with solutions for the
endemic problem of aliasing within object-oriented programs, i.e., a particular
object can be referred to by any number of other objects via its reference. This
fact may be unknown to the algorithm animation system and can cause problems
for animations. The paper discusses analysis of the program to determine the
extent of aliasing as well as a visualization of ownership trees of objects in Java
programs.
Scene [48] automatically produces scenario diagrams (event trace diagrams)

for existing object-oriented systems. This tool does not provide visualization of
the message flow in an object-oriented program, but by means of an active text
framework it allows the user to browse several kinds of associated documents,
such as source code, class interfaces or diagrams, and call matrices.

4.4 Logical Programming Languages

In logic programs, the interesting abstractions are clauses and unification. One
of the classic systems for visualizing logic programs is the Transparent Prolog
Machine Tpm [34]. It uses an AND/OR tree model of the search space and the
execution of the logic program is shown as a DFS search. Another system for
presenting logic programs was discussed by Senay and Lazzeri [70].

5 Domain Specific Animations

The search for adequate abstractions of the specific properties of a particular do-
main, e.g., realtime algorithms, can be a challenge when animating algorithms in



8 A. Kerren and J.T. Stasko

such a focused domain. To find such abstractions, knowledge regarding the types
of objects and operations that are dominant in the special domain is necessary.
Often, general algorithm animation systems can be used to build domain-specific
animations, but the effort can be extensive and much more involved than that
required for a more narrowly-focused system.

Tal presents a conceptual model for developing algorithm animation systems
for constraint domains in this chapter [84]. She illuminates the practical imple-
mentation of this model on the basis of a few example systems, e.g., the Gasp
system, mentioned earlier.

5.1 Computational Geometry

In computational geometry, the task of finding abstractions of the data can be
relatively easy if the program data contains positional information. Hence, it can
be displayed without complicated transformation.

A generic tool for the interactive visualization of geometric algorithms is
GeoWin discussed by Bäsken and Näher in this chapter [4]. It is a C++ data
type which can be interfaced with algorithmic software libraries such as LEDA.

The Evega system [46] is a Java-based visualization environment for graph
algorithms and offers a set of features to create and edit graphs, to display
visualizations and to perform comparisons of different algorithms. Furthermore,
it supports a relatively straightforward implementation of new algorithms by
class extension.

5.2 Concurrent Programs

The animation of concurrent programs, which are typically very complex and
large, must address a number of problems with regard to data collection, data
display and program execution. Some problems encountered are inherently vi-
sual, e.g., a cycle in a resource allocation graph corresponds to a deadlock situa-
tion. Other problems can be a non-deterministic occurrence of a bug in program
execution, which requires a clever visualization of the concurrent program. For
an overview of systems for visualizing concurrent programs, see [49].

The event-based Parade environment [74] supports the design and imple-
mentation of animations of parallel and distributed programs. Interesting events
may be received via program calls, through pipes or read from a file, similar to
the aforementioned Samba interpreter. A particular component of the system
gathers the events for each processor or process and allows the user to manipu-
late the order of these events, e.g. chronologically or logically [50]. The Polka
animation system is used in Parade to build the graphical views.
Vade [53] is a client-server based system for visualizing algorithms in a distri-

buted environment. It provides libraries that facilitate the automatic generation
of visualizations, and supports web page creation for the final animation. Furt-
hermore, Vade offers synchronization methods that maintain consistency.



Algorithm Animation 9

5.3 Real-Time Animation

Some domains, such as network protocols, need to represent exact timing rela-
tionships in the underlying program or algorithm. Polka-Rc [80] is an exten-
sion of Polka with features for real-time animation, i.e., animation actions of
precise timings, initiations and durations. It also provides a flexible multipro-
cess mapping between program and visualization. More precisely in Polka-Rc
the program and its animation run as separate processes and communicate via
sockets.

The Jotsa system [64] is a Java package for performing interactive web-
based algorithm animations (especially for network protocols). It supports exact
time animation, multiple independent synchronized views, panning, zooming and
linking of collections of objects. In addition it has facilities for animation of user-
defined event-driven and timer-driven simulations of network protocols.

5.4 Computational Models

Another domain of interest to algorithm animators is the animation of compu-
tational models of formal languages, sets, relations, and functions. These models
are typically for mathematical reasoning, not for programming of real hardware
and real applications.
Jflap [40] is a tool for creating and simulating several kinds of automata, i.e.

finite automata, pushdown automata and Turing machines, and for converting
representations of languages from one form to another. Jflap is written in Java
and has been used both in and outside of the classroom.

Diehl and Kerren [29] discuss how generation of visualizations of compu-
tational models and the visualization of the generation process itself increase
exploration. Four approaches of increased exploration in formal language theory
and compiler design are introduced and each approach is exemplified by an im-
plemented system. As an example of such a system, the authors characterize
GaniFa [30], a Java applet for the visual generation and animated simulation
of finite automata.

5.5 Animation of Proofs

A relatively unexplored area is the visualization of proofs in theoretical computer
science education. An example is Scapa [60,61] a system for the animation of
structured calculational proofs. This system generates both an HTML document
(with the help of a converter) and a Java file from a proof written in LATEX. The
visualizer has to extend and modify these files. The proof animation is finally
created by using an extended version of the Lambada tool, which is a Java-based
reimplementation of Samba.

6 Conclusion

Much progress has been made in the field of Algorithm Animation since the first
films motivating the field, such as Sorting Out Sorting, were made. In this chapter



10 A. Kerren and J.T. Stasko

introduction, we have highlighted a number of the landmark systems that have
been developed in the area, plus we have surveyed some new developments. A
brief introduction like this, however, is in no way a comprehensive overview of
the field. We encourage the reader to use this introduction and the articles in
this chapter as a starting point for exploring other research and creating new
systems and techniques.

References

1. R. Baecker. Towards Animating Computer Programs: A First Progress Report. In
Proceedings of the Third NRC Man-Computer Communications Conference, 1973.

2. R. Baecker. Sorting Out Sorting: A Case Study of Software Visualization for
Teaching Computer Science. In John Stasko, John Domingue, Marc H. Brown,
and Blaine A. Price, editors, Software Visualization: Programming as a Multimedia
Experience, chapter 24, pages 369–381. MIT Press, Cambridge, MA, 1998.

3. R. Baecker (with assistance of Dave Sherman). Sorting out Sorting. 30 minute
color film (distributed by Morgan Kaufmann Pub.), 1981.

4. Matthias Bäsken and Stefan Näher. GeoWin A Generic Tool for Interactive Visua-
lization of Geometric Algorithms. In Proceedings of Dagstuhl Seminar on Software
Visualization, 2001.

5. Mordechai Ben-Ari, Niko Myller, Erkki Sutinen, and Jorma Tarhio. Perspectives on
Program Animation with Jeliot. In Proceedings of Dagstuhl Seminar on Software
Visualization, 2001.

6. J. L. Bentley and B. W. Kernighan. A System for Algorithm Animation. Compu-
ting Systems, 4(1), Winter 1991.

7. R. Berghammer. KIEL: A Program for Visualizations of the Evaluation of Func-
tional Programs (in German). In S. Diehl and A. Kerren, editors: Proceedings of
the GI-Workshop ”Software Visualization” SV2000, May 2000.

8. M. H. Brown. Algorithm Animation. MIT Press, 1987.
9. M. H. Brown. Exploring Algorithms with Balsa-II. Computer, 21(5), 1988.
10. M. H. Brown. Perspectives on Algorithm Animation. In Proceedings of the ACM

SIGCHI ’88 Conference on Human Factors in Computing Systems, pages 33–38,
Washington D.C., May 1988.

11. M. H. Brown. ZEUS: A System for Algorithm Animation and Multi-View Editing.
In Proceedings of the 1991 IEEE Workshop on Visual Languages, pages 4–9, Kobe
Japan, October 1991.

12. M. H. Brown and J. Hershberger. Fundamental Techniques for Algorithm Anima-
tion Displays. In John T. Stasko, John Domingue, Marc H. Brown, and Blaine A.
Price, editors, Software Visualization. MIT Press, 1998.

13. M. H. Brown and J. Hershberger. Program Auralization. In John Stasko, John
Domingue, Marc H. Brown, and Blaine A. Price, editors, Software Visualization:
Programming as a Multimedia Experience, chapter 10, pages 137–143. MIT Press,
1998.

14. M. H. Brown and M. Najork. Collaborative Active Textbooks: A Web-Based
Algorithm Animation System for an Electronic Classroom. In Proceedings of the
1996 IEEE International Symposium on Visual Languages, Boulder, CO, 1996.

15. M. H. Brown and M. A. Najork. Algorithm Animation Using 3D Interactive Gra-
phics. In Proceedings of the 1993 ACM Symposium on User Interface Software and
Technology, pages 93–100, Atlanta, GA, November 1993.



Algorithm Animation 11

16. M. H. Brown and M. A. Najork. Algorithm Animation Using Interactive 3D Gra-
phics. In John Stasko, John Domingue, Marc H. Brown, and Blaine A. Price,
editors, Software Visualization: Programming as a Multimedia Experience, chap-
ter 9, pages 119–135. MIT Press, 1998.

17. M. H. Brown and M. A. Najork. Three-Dimensional Web-Based Algorithm Ani-
mations. Technical Report 170, Compaq Systems Research Center, July 2001.

18. M. H. Brown and R. Raisamo. JCAT: Collaborative Active Textbooks Using Java.
In Proceedings of CompuGraphics’96, Paris, France, 1996.

19. M. H. Brown and R. Sedgewick. A System for Algorithm Animation. In Proceedings
of ACM SIGGRAPH’84, Minneapolis, MN, 1984.

20. P. Carlson, M. Burnett, and J. Cadiz. A Seamless Integration of Algorithm Anima-
tion into a Declarative Visual Programming Language. In Proceedings Advanced
Visual Interfaces (AVI’96), 1996.

21. A.I. Concepcion, N. Leach, and A. Knight. Algorithma 99: An Experiment in
Reusability and Component-Based Software Engineering. In Proceedings of the
31st ACM Technical Symposium on Computer Science Education (SIGCSE 2000),
pages 162–166, Austin, TX, February 2000.

22. K. C. Cox and G.-C. Roman. Abstraction in Algorithm Animation. In Procee-
dings of the 1992 IEEE Workshop on Visual Languages, pages 18–24, Seattle, WA,
September 1992.

23. C. Demetrescu and I. Finocchi. A Technique for Generating Graphical Abstractions
of Program Data Structures. In Proceedings of the 3rd International Conference on
Visual Information Systems (Visual’99), LNCS 1614, pages 785–792, Amsterdam,
1999. Springer.

24. C. Demetrescu and I. Finocchi. Smooth Animation of Algorithms in a Declarative
Framework. Journal of Visual Languages and Computing, 12(3):253–281, June
2001.

25. Camil Demetrescu, Irene Finocchi, and John Stasko. Specifying Algorithm Visua-
lizations: Interesting Events or State Mapping? In Proceedings of Dagstuhl Seminar
on Software Visualization, 2001.

26. H. L. Dershem and P. Brummund. Tools for Web-based Sorting Animations. In
Proceedings of the 29th ACM Technical Symposium on Computer Science Educa-
tion (SIGCSE 98), pages 222–226, Atlanta, GA, February 1998.

27. Eds.: S. Diehl and A. Kerren. Proceedings of the GI-Workshop ”Software Visua-
lization” SV2000 (in German). Technical Report A/01/2000, FR 6.2 - Informatik,
University of Saarland, May 2000. http://www.cs.uni-sb.de/tr/FB14.

28. S. Diehl, editor. Software Visualization, volume 2269 of LNCS State-of-the-art
Survey. Springer Verlag, 2002.

29. S. Diehl and A. Kerren. Levels of Exploration. In Proceedings of the 32nd Technical
Symposium on Computer Science Education, SIGCSE 2001, pages 60–64. ACM,
2001.

30. S. Diehl, A. Kerren, and T. Weller. Visual Exploration of Generation Algorithms
for Finite Automata. In Implementation and Application of Automata, LNCS 2088,
pages 327–328, 2001.

31. Stephan Diehl, Carsten Görg, and Andreas Kerren. Animating Algorithms Live
and Post Mortem. In Proceedings of Dagstuhl Seminar on Software Visualization,
2001.

32. R. A. Duisberg. Visual Programming of Program Visualizations. A Gestural Inter-
face for Animating Algorithms. In Proceedings of the 1987 IEEE Computer Society
Workshop on Visual Languages, pages 55–66, Linkoping, Sweden, August 1987.

http://www.cs.uni-sb.de/tr/FB14


12 A. Kerren and J.T. Stasko

33. P. Eades and K. Zhang, editors. Software Visualization. World Scientific Pub.,
Singapore, 1996.

34. M. Eisenstadt and M. Brayshaw. The Transparent Prolog Machine (TPM): An
Execution Model and Graphical Debugger for Logic Programming. Journal of
Logic Programming, 5(4):1–66, 1988.

35. S. Foubister. Graphical Application and Visualisation of Lazy Functional Compu-
tation. PhD thesis, Department of Computer Science, University of York, 1995.

36. Jaroslaw Francik. Algorithm Animation Using Data Flow Tracing. In Proceedings
of Dagstuhl Seminar on Software Visualization, 2001.

37. P. A. Gloor. AACE - Algorithm Animation for Computer Science Education. In
Proceedings of the 1992 IEEE Workshop on Visual Languages, pages 25–31, Seattle,
WA, September 1992.

38. P. A. Gloor. Animated Algorithms. In John Stasko, John Domingue, Marc H.
Brown, and Blaine A. Price, editors, Software Visualization: Programming as a
Multimedia Experience, chapter 27, pages 409–416. MIT Press, Cambridge, MA,
1998.

39. P. A. Gloor. User Interface Issues for Algorithm Animation. In John Stasko, John
Domingue, Marc H. Brown, and Blaine A. Price, editors, Software Visualization:
Programming as a Multimedia Experience, chapter 11, pages 145–152. MIT Press,
Cambridge, MA, 1998.

40. E. Gramond and S. H. Rodger. Using JFLAP to Interact with Theorems in Auto-
mata Theory. SIGCSE Bulletin (ACM Special Interest Group on Computer Science
Education), 31, 1999.

41. J. Haajanen et al. Animation of User Algorithms on the Web. In Proceedings
of the 1997 IEEE Symposium on Visual Languages, pages 360–367, Capri, Italy,
September 1997.

42. E. Helttula, A. Hyrskykari, and K.-J. Räihä. Graphical Specification of Algorithm
Animations with Aladdin. In Proceedings of the 22nd Hawaii International Con-
ference on System Sciences, pages 892–901, Kailua-Kona, HI, January 1989.

43. R. R. Henry, K. M. Whaley, and B. Forstall. The University of Washington Illust-
rating Compiler. Sigplan Notices: SIGPLAN ’90, 25(6):223–233, June 1990.

44. F. Hopgood. Computer Animation Used as a Tool in Teaching Computer Science.
In Proceedings IFIP Congress, 1974.

45. A. Hyrskykari and K.-J. Räihä. Animation of Algorithms Without Programming.
In Proceedings of the 1987 IEEE Computer Society Workshop on Visual Languages,
pages 40–54, Linkoping, Sweden, August 1987.

46. S. Khuri and K. Holzapfel. EVEGA: An Educational Visualization Environment
for Graph Algorithms. In Proceedings of the 6th Annual Conference on Innovaton
and Technology in Computer Science Education, ITiCSE 2001. ACM Press, 2001.

47. K. Knowlton. L6: Bell Telephone Laboratories Low-Level Linked List Language.
16-minute black-and-white film, 1966.

48. K. Koskimies and K. Mössenböck. Scene: Using Scenario Diagrams and Active
Text for Illustrating Object-Oriented Programs. In Proceedings of the 18th IEEE
International Conference on Software Engineering, pages 366–375. IEEE Computer
Society Press, 1996.

49. E. Kraemer. Visualizing Concurrent Programs. In John Stasko, John Domingue,
Marc H. Brown, and Blaine A. Price, editors, Software Visualization: Programming
as a Multimedia Experience, chapter 17, pages 237–256. MIT Press, Cambridge,
MA, 1998.



Algorithm Animation 13

50. E. Kraemer and J. T. Stasko. Toward Flexible Control of the Temporal Map-
ping from Concurrent Program Events to Animations. In Proceedings of the 8th
International Parallel Processing Symposium (IPPS ’94), pages 902–908, Cancun,
Mexico, April 1994.

51. S. K. Lodha, J. Beahan, T. Heppe, A. Joseph, and B. Zane-Ulman. MUSE: A
Musical Data Sonification Toolkit. In Proceedings of International Conference on
Auditory Display (ICAD), Palo Alto, CA, USA, 1997.

52. R. L. London and R. A. Duisberg. Animating Programs Using Smalltalk. Compu-
ter, 18(8):61–71, August 1985.

53. Y. Moses, Z. Polunsky, and A. Tal. Algorithm Visualization For Distributed En-
vironments. In Proceedings of the IEEE Symposium on Information Visualization
1998, pages 71–78, 1998.

54. S. Mukherjea and J. T. Stasko. Toward Visual Debugging: Integrating Algorithm
Animation Capabilities within a Source Level Debugger. ACM Transactions on
Computer-Human Interaction, 1(3):215–244, September 1994.

55. M. A. Najork. Web-Based Algorithm Animation. In Proceedings of the 38th Design
Automation Conference (DAC 2001), pages 506–511, 2001.

56. T. L. Naps. Algorithm Visualization in Computer Science Laboratories. In Procee-
dings of the 21st SIGCSE Technical Symposium on Computer Science Education,
pages 105–110, Washington, DC, February 1990.

57. T. L. Naps, J. R. Eagan, and L. L. Norton. JHAVE – An Environment to Actively
Engage Students in Web-Based Algorithm Visualizations. In Proceedings of the
31st SIGCSE Technical Symposium on Computer Science Education, pages 109–
113, Austin, TX, March 2000.

58. James Noble. Visualising Objects: Abstraction, Encapsulation, Aliasing and Ow-
nership. In Proceedings of Dagstuhl Seminar on Software Visualization, 2001.

59. M. Oudshoorn, H. Widjaja, and S. Ellershaw. Aspects and Taxonomy of Program
Visualisation. In P. Eades and K. Zhang, editors, Software Visualisation. World
Scientific Press, Singapore, 1996.

60. C. Pape. Animation of Structured Proofs in Education at University Level (in
German). PhD thesis, University of Karlsruhe, Germany, 1999.

61. C. Pape and P. H. Schmitt. Visualizations for Proof Presentation in Theoretical
Computer Science Education. In Z. Halim, Th. Ottmann, and Z. Razak, editors,
Proceedings of International Conference on Computers in Education, pages 229–
236. AACE - Association for the Advancement of Computing in Education, 1997.

62. W. C. Pierson and S. H. Rodger. Web-based Animation of Data Structures using
JAWAA. In Proceedings of the 29th ACM Technical Symposium on Computer
Science Education (SIGCSE 98), pages 257–260, Atlanta, GA, February 1998.

63. B. A. Price, R. Baecker, and I. Small. A Principled Taxonomy of Software Visua-
lization. Journal of Visual Languages and Computing, 4(3):211–266, 1993.

64. S. Robbins. The JOTSA Animation Environment. In Proceedings of the 31st
Hawaii Int. Conference on Systems Science, pages 655–664, 1998.

65. G.-C. Roman. Declarative Visualization. In John Stasko, John Domingue, Marc H.
Brown, and Blaine A. Price, editors, Software Visualization: Programming as a
Multimedia Experience, chapter 13, pages 173–186. MIT Press, Cambridge, MA,
1998.

66. G.-C. Roman and K. C. Cox. A Declarative Approach to Visualizing Concurrent
Computations. Computer, 22(10):25–36, October 1989.

67. G.-C. Roman, K. C. Cox, Donald Wilcox, and Jerome Y. Plun. Pavane: a Sy-
stem for Declarative Visualization of Concurrent Computations. Journal of Visual
Languages and Computing, 3(2):161–193, June 1992.



14 A. Kerren and J.T. Stasko

68. G. Rössling and B. Freisleben. ANIMAL: A System for Supporting Multiple Roles
in Algorithm Animation. Journal of Visual Languages and Computing, 2002. to
appear.

69. G. Rössling, M. Schuler, and B. Freisleben. The ANIMAL Algorithm Animation
Tool. In Proceedings of the ITiCSE 2000 Conference, pages 37–40, Helsinki, Fin-
land, 2000.

70. H. Senay and S. G. Lazzeri. Graphical Representation of Logic Programs and
Their Behavior. In Proceedings of the 1991 IEEE Workshop on Visual Languages,
pages 25–31, Kobe, Japan, October 1991.

71. J. T. Stasko. Using Direct Manipulation to Build Algorithm Animations by Demon-
stration. In Proceedings of the ACM SIGCHI ’91 Conference on Human Factors
in Computing Systems, New Orleans, LA, USA.

72. J. T. Stasko. TANGO: A Framework and System for Algorithm Animation. Com-
puter, 23(9):27–39, 1990.

73. J. T. Stasko. The Path-Transition Paradigm: A Practical Methodology for Adding
Animation to Program Interfaces. Journal of Visual Languages and Computing,
1(3):213–236, 1990.

74. J. T. Stasko. The PARADE Environment for Visualizing Parallel Program Exe-
cutions: A Progress Report. Technical Report GIT-GVU-95-03, 1995.

75. J. T. Stasko. Using Student-Built Algorithm Animations as Learning Aids. In
Proceedings of the 1998 ACM SIGCSE Conference, San Jose, CA, 1997.

76. J. T. Stasko. Building Software Visualizations through Direct Manipulation and
Demonstration. In John Stasko, John Domingue, Marc H. Brown, and Blaine A.
Price, editors, Software Visualization: Programming as a Multimedia Experience,
chapter 14, pages 187–203. MIT Press, Cambridge, MA, 1998.

77. J. T. Stasko. Smooth Continuous Animation for Portraying Algorithms and Pro-
cesses. In John Stasko, John Domingue, Marc H. Brown, and Blaine A. Price,
editors, Software Visualization: Programming as a Multimedia Experience, chap-
ter 8, pages 103–118. MIT Press, Cambridge, MA, 1998.

78. J. T. Stasko, J. Domingue, M. H. Brown, and B. A. Price. Software Visualization.
MIT Press, 1998.

79. J. T. Stasko and E. Kraemer. A Methodology for Building Application-Specific Vi-
sualizations of Parallel Programs. Journal of Parallel and Distributed Computing,
18(2), 1993.

80. J. T. Stasko and D. S. McCrickard. Real Clock Time Animation Support for
Developing Software Visualisations. Australian Computer Journal, 27(4):118–128,
1995.

81. J. T. Stasko and J. F. Wehrli. Three-Dimensional Computation Visualization. In
Proceedings of the 1993 IEEE Symposium on Visual Languages, pages 100–107,
Bergen, Norway, August 1993.

82. E. Sutinen, editor. Proceedings of the First Program Visualization Workshop 2000,
Porvoo, Finland, 2000. Department of Computer Sience, University of Joensuu,
Finland.

83. A. Y. Tal and D. P. Dobkin. Visualization of Geometric Algorithms. IEEE Tran-
sactions on Visualization and Computer Graphics, 1(2), 1995.

84. Ayellet Tal. Algorithm Animation Systems for Constrained Domains. In Procee-
dings of Dagstuhl Seminar on Software Visualization, 2001.

85. P. Vickers and J. L. Alty. CAITLIN: AMusical Program Auralisation Tool to Assist
Novice Programmers with Debugging. In Proceedings of International Conference
on Auditory Display (ICAD), Palo Alto, CA, USA, 1996.



Algorithm Animation 15

86. P. Vickers and J. L. Alty. Musical Program Auralisation: Empirical Studies. In
Proceedings of International Conference on Auditory Display (ICAD), Atlanta,
GA, USA, 2000.

87. R. Watson and E. Salzman. A Trace Browser for a Lazy Functional Language.
In Proceedings of the Twentieth Australian Computer Science Conference, pages
356–363, 1997.

88. J. R. Weinstein and P. R. Cook. FAUST: A Framework for Algorithm Under-
standing and Sonification Testing. In Proceedings of International Conference on
Auditory Display (ICAD), Palo Alto, CA, USA, 1997.


	Classical Systems and Concepts 
	Specification Technique 
	Event Driven
	State Driven
	Visual Programming
	Automatic Animation

	Visualization Technique
	3D Algorithm Animation
	Auralization
	Web Deployment

	Language Paradigm
	Imperative Programming Languages
	Functional Programming Languages
	Object-Oriented Programming Languages
	Logical Programming Languages

	Domain Specific Animations
	Computational Geometry
	Concurrent Programs
	Real-Time Animation
	Computational Models
	Animation of Proofs

	Conclusion

